J. G. Leidenfrost, De aquae communis nonnullis qualitatibus tractatus (Ovenius, Duisburg, 1756).
A.-L. Biance, C. Clanet, and D. Quéré, Leidenfrost drops, Phys. Fluids 15, 1632 (2003).
P. H. Boutigny, Nouvelle branche de physique: ou, Études sur les corps à l'état sphéröidal (Librairie Scientifique-Industrielle de L. Mathias, Paris, 1847).
G. Dupeux, M. Le Merrer, G. Lagubeau, C. Clanet, S. Hardt, and D. Quéré, Viscous mechanism for Leidenfrost propulsion on a ratchet, Europhys. Lett. 96, 58001 (2011).
R. Abdelaziz, D. Disci-Zayed, M. K. Hedayati, J.-H. Pöhls, A. U. Zillohu, B. Erkartal, V. S. K. Chakravadhanula, V. Duppel, L. Kienle, and M. Elbahri, Green chemistry and nanofabrication in a levitated Leidenfrost drop, Nat. Commun. 4, 2400 (2013).
B. Schwenzer, Leidenfrost drops prove to be versatile nanoreactors, MRS Bull. 39, 7 (2014).
J. D. Bernardin and I. Mudawar, The Leidenfrost point: Experimental study and assessment of existing models, J. Heat Transfer 121, 894 (1999).
H. Kim, B. Truong, J. Buongiorno, and L.-W. Hu, On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena, Appl. Phys. Lett. 98, 083121 (2011).
P. Bourrianne, Non-mouillant et température, Ph.D. thesis, École Polytechnique de Palaiseau, 2016.
I. U. Vakarelski, N. A. Patankar, J. O. Marston, D. Y. C. Chan, and S. T. Thoroddsen, Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces, Nature (London) 489, 274 (2012).
H. Kwon, J. C. Bird, and K. K. Varanasi, Increasing Leidenfrost point using micro-nano hierarchical surface structures, Appl. Phys. Lett. 103, 201601 (2013).
C. Kruse, T. Anderson, C. Wilson, C. Zuhlke, D. Alexander, G. Gogos, and S. Ndao, Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces, Langmuir 29, 9798 (2013).
H. Kim, Floating phenomenon of a water drop on the surface of liquid nitrogen, J. Korean Phys. Soc. 49, L1335 (2006).
A. Snezhko, E. B. Jacob, and I. S. Aranson, Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets, New J. Phys. 10, 043034 (2008).
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.1.053902. The graph shows the final radius of drops as a function of the superheat. A few esthetic pictures (credits go to F. Cavagnon) of Leidenfrost drops on liquid substrates are also available.
B. Sobac, A. Rednikov, S. Dorbolo, and P. Colinet, Leidenfrost effect: Accurate drop shape modeling and new scaling laws, Phys. Rev. E 90, 053011 (2014).
L. Duchemin, J. R. Lister, and U. Lange, Static shapes of levitated viscous drops, J. Fluid Mech. 533, 161 (2005).
J. H. Snoeijer, P. Brunet, and J. Eggers, Maximum size of drops levitated by an air cushion, Phys. Rev. E 79, 036307 (2009).
F. Celestini, T. Frisch, and Y. Pomeau, Take Off of Small Leidenfrost Droplets, Phys. Rev. Lett. 109, 034501 (2012).
D. Vella and L. Mahadevan, The cheerios effect, Am. J. Phys. 73, 817 (2005).
Y. Couder, E. Fort, C.-H. Gautier, and A. Boudaoud, From Bouncing to Floating: Noncoalescence of Drops on a Fluid Bath, Phys. Rev. Lett. 94, 177801 (2005).
A.-B. Wang, C.-H. Lin, and C.-C. Chen, The critical temperature of dry impact for tiny droplet impinging on a heated surface, Phys. Fluids 12, 1622 (2000).
R. Savino, D. Paterna, and M. Lappa, Marangoni flotation of liquid droplets, J. Fluid Mech. 479, 307 (2003).