[en] Introduction. Discovering novel enzymes is of interest in both applied and basic science. Microbial enzymes, which are incredibly diverse and easy to produce, are increasingly sought by diverse approaches.
Literature. This review first distinguishes culture-based from culture-independent methods, detailing within each group the advantages and drawbacks of sequence- and function-based methods. It then discusses the main factors affecting the success of endeavors to identify novel enzymes through construction and functional screening of genomic or metagenomic libraries: the sampled environment, how DNA is extracted and processed, the vector used (plasmid, cosmid, fosmid, BAC, or shuttle vector), the host cell chosen from the available prokaryotic and eukaryotic ones and the main screening steps.
Conclusions. Library construction and screening can be tricky and requires expertise. Combining different strategies, such as working with cultivable and non-cultivable organisms, using sequence- and function-based approaches, or performing multihost screenings, is probably the best way to identify novel and diverse enzymes from an environmental sample.
Disciplines :
Microbiology
Author, co-author :
Martin, Marjolaine ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbiologie et génomique
Vandenbol, Micheline ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbiologie et génomique
Language :
English
Title :
The hunt for original microbial enzymes: an initiatory review on the construction and functional screening of (meta)genomic libraries
Alternative titles :
[fr] La chasse aux enzymes microbiennes originales: une synthèse bibliographique initiatique sur la construction et le criblage fonctionnel de banques (méta)génomiques
Publication date :
2016
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Aakvik T. et al., 2009. A plasmid RK2-based broad-host-range cloning vector useful for transfer of metagenomic libraries to a variety of bacterial species. FEMS Microbiol. Lett., 296, 149-158.
Berasategui A., Shukla S., Salem H. & Kaltenpoth M., 2015. Potential applications of insect symbionts in biotechnology. Appl. Microbiol. Biotechnol., 100, 1567-1577.
Bleidorn C., 2015. Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Syst. Biodivers., 2000, 1-8.
Borglin S. et al., 2012. Application of phenotypic microarrays to environmental microbiology. Curr. Opin. Biotechnol., 23, 41-48.
Borkar S., 2015. Alkaliphilic bacteria: diversity, physiology and industrial applications. In: Borka S., ed. Bioprospects of coastal eubacteria. Springer International Publishing, 59-83.
Burke C., Kjelleberg S. & Thomas T., 2009. Selective extraction of bacterial DNA from the surfaces of macroalgae. Appl. Environ. Microbiol., 75, 252-256.
Chang A. et al., 2015. BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Res., 43, D439-446.
Cobb R.E., Chao R. & Zhao H., 2013. Directed evolution: past, present and future. AIChE J., 59, 1432-1440.
de Lourdes Moreno M., Pérez D., García M.T. & Mellado E., 2013. Halophilic bacteria as a source of novel hydrolytic enzymes. Life, 3, 38-51.
De Monte S., Soccodato A., Alvain S. & d’Ovidio F., 2013. Can we detect oceanic biodiversity hotspots from space? ISME J., 7, 2054-2056.
Denard C.A., Ren H. & Zhao H., 2015. Improving and repurposing biocatalysts via directed evolution. Curr. Opin. Chem. Biol., 25, 55-64.
Dorofeev A.G. et al., 2014. Approaches to cultivation of “nonculturable” bacteria: Cyclic cultures. Microbiology, 83, 450-461.
Ekkers D.M., Cretoiu M.S., Kielak A.M. & Elsas J.D., 2012. The great screen anomaly–a new frontier in product discovery through functional metagenomics. Appl. Microbiol. Biotechnol., 93, 1005-1020.
Faure D. & Joly D., 2015. Next-generation sequencing as a powerful motor for advances in the biological and environmental sciences. Genetica, 143, 129-132.
Ferrer M. et al., 2016. Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb. Biotechnol., 9, 22-34.
Gabor E.M., Alkema W.B.L. & Janssen D.B., 2004. Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ. Microbiol., 6, 879-886.
Gaida S.M. et al., 2015. Expression of heterologous sigma factors enables functional screening of metagenomic and heterologous genomic libraries. Nat. Commun., 6, 7045.
Gavrilescu M. & Chisti Y., 2005. Biotechnology–a sustainable alternative for chemical industry. Biotechnol. Adv., 23, 471-479.
Gündüz Ergün B. & Çalık P., 2015. Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess Biosyst. Eng., 39(1), 1-36.
Handelsman J., 2004. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev., 68, 669-685.
He Z., Zhu Y. & Gu H., 2013. A new method for the determination of critical polyethylene glycol concentration for selective precipitation of DNA fragments. Appl. Microbiol. Biotechnol., 97, 9175-9183.
Highlander S., 2014. Culturing. In: Nelson K.E., ed. Encyclopedia of metagenomics. New York, USA: Springer, 1-4.
Jung D. et al., 2014. Application of a new cultivation technology, I-tip, for studying microbial diversity in freshwater sponges of Lake Baikal, Russia. FEMS Microbiol. Ecol., 90, 417-423.
Kamagata Y., 2015. Keys to cultivating uncultured microbes: elaborate enrichment strategies and resuscitation of dormant cells. Microbes Environ., 30, 289-290.
Kato C., 2012. Microbiology of piezophiles in deep-sea environments. In: Anitori R.P., ed. Extremophiles: microbiology and biotechnology. Norfolk, UK: Caister Academic Press, 233.
Kellner H., Luis P., Portetelle D. & Vandenbol M., 2011. Screening of a soil metatranscriptomic library by functional complementation of Saccharomyces cerevisiae mutants. Microbiol. Res., 166, 360-368.
Kuzyakov Y. & Blagodatskaya E., 2015. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem., 83, 184-199.
Leis B., Angelov A. & Liebl W., 2013. Screening and expression of genes from metagenomes. Adv. Appl. Microbiol., 83, 1-68.
Li S. et al., 2007. A set of UV-inducible autolytic vectors for high throughput screening. J. Biotechnol., 127, 647-652.
Liebl W. et al., 2014. Alternative hosts for functional (meta)genome analysis. Appl. Microbiol. Biotechnol., 98, 8099-8109.
Liu L. et al., 2013. How to achieve high-level expression of microbial enzymes: Strategies and perspectives. Bioengineered, 4, 212-223.
Martin M., Portetelle D., Michel G. & Vandenbol M., 2014. Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Appl. Microbiol. Biotechnol., 98, 2917-2935.
Martinez A. et al., 2004. Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl. Environ. Microbiol., 70, 2452-2463.
Morgavi D.P., Kelly W.J., Janssen P.H. & Attwood G.T., 2013. Rumen microbial (meta)genomics and its application to ruminant production. Animal, 7, 184-201.
Narihiro T. et al., 2014. The combination of functional metagenomics and an oil-fed enrichment strategy revealed the phylogenetic diversity of lipolytic bacteria overlooked by the cultivation-based method. Microbes Environ., 29, 154-161.
Packer M.S. & Liu D.R., 2015. Methods for the directed evolution of proteins. Nat. Rev. Genet., 16, 379-394.
Pham V.H.T. & Kim J., 2012. Cultivation of unculturable soil bacteria. Trends Biotechnol., 30, 475-484.
Porro D., Sauer M., Branduardi P. & Mattanovich D., 2005. Recombinant protein production in yeasts. Mol. Biotechnol., 31, 245-259.
Prosser G.A., Larrouy-Maumus G. & de Carvalho L.P.S., 2014. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways. EMBO Rep., 15, 657-669.
Raddadi N. et al., 2015. Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl. Microbiol. Biotechnol., 99, 7907-7913.
Raval V.H., Purohit M.K. & Singh S.P., 2013. Diversity, population dynamics and biocatalytic potential of cultivable and non-cultivable bacterial communities of the saline ecosystems. In: Trincone A., ed. Marine enzymes for biocatalysis. Sources, biocatalytic characteristics and bioprocesses of marine enzymes. Cambridge, UK: Woodhead Publishing Limited, 165-189.
Rhoads A. & Au K.F., 2015. PacBio sequencing and its applications. Genomics Proteomics Bioinf., 13, 278-289.
Riquelme C., Rojas A., Florest V. & Correatj J.A., 1997. Epiphytic bacteria in a copper-enriched environment in Northern Chile. Mar. Pollut. Bull., 34, 816-820.
Roberts S.M., Turner N.J., Willetts A.J. & Turner M.K., 1995. Introduction to biocatalysis using enzymes and microorganisms. Cambridge, UK: Cambridge University Press, 34-79.
Rodriguez-Valera F., 2014. Fosmid system. In: Nelson K.E., ed. Encyclopedia of metagenomics. New York, USA: Springer, 1-5.
Shizuya H. et al., 1992. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. U.S.A., 89, 8794-8797.
Simon C., Herath J., Rockstroh S. & Daniel R., 2009. Rapid identification of genes encoding DNA polymerases by function-based screening of metagenomic libraries derived from glacial ice. Appl. Environ. Microbiol., 75, 2964-2968.
Steinert G. et al., 2014. Application of diffusion growth chambers for the cultivation of marine sponge-associated bacteria. Mar. Biotechnol., 16, 594-603.
Taupp M., Mewis K. & Hallam S.J., 2011. The art and design of functional metagenomic screens. Curr. Opin. Biotechnol., 22, 465-472.
Terrón-González L., Medina C., Limón-Mortés M.C. & Santero E., 2013. Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries. Sci. Rep., 3, 1107.
Thomas T., Gilbert J. & Meyer F., 2012. Metagenomics-a guide from sampling to data analysis. Microb. Inf. Exp., 2, 3.
Ufarte L., Potocki-Veronese G. & Laville E., 2015. Discovery of new protein families and functions: new challenges in functional metagenomics for biotechnologies and microbial ecology. Front. Microbiol., 6, 1-10.
Vester J.K., Glaring M.A. & Stougaard P., 2015. Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles, 19, 17-29.
Walker A.W., Duncan S.H., Louis P. & Flint H.J., 2014. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol., 22, 267-274.
Wang L., Nasrin S., Liles M. & Yu Z., 2014. Use of bacterial artificial chromosomes in metagenomics studies, overview. In: Nelson K.E., ed. Encyclopedia of metagenomics. New York, USA: Springer.
Warnecke F. & Hess M., 2009. A perspective: metatranscriptomics as a tool for the discovery of novel biocatalysts. J. Biotechnol., 142, 91-95.
Xu L. et al., 2006. Heat-inducible autolytic vector for high-throughput screening. BioTechniques, 41, 319-323.
Yarza P. et al., 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol., 12, 635-645.
Zhou J., Bruns M.A. & Tiedje J.M., 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol., 62, 316-322.