CEIB - Centre Interfacultaire des Biomatériaux - ULiège
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Araújo, D.
Alves, V.D.
Campo, J.
Coelhoso
Sevrin, Chantal ; Université de Liège > Centre interfacultaire des biomatériaux (CEIB)
Grandfils, Christian ; Université de Liège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, et biochimie humaine
Freitas, F.
Reis, M.A.M
Language :
English
Title :
Assessment of the adhesive properties of FucoPol, a bacterial polysaccharide
Publication date :
2016
Journal title :
International Journal of Biological Macromolecules
[2] Xu, H., Luo, J., Gao, Q., Zhang, S., Li, J., Improved water resistance of soybean meal-based adhesive with SDS and PAM. BioResources 9 (2014), 4667–4678.
[3] Zhong, Z., Sun, X.S., Fang, X., Ratto, J.A., Adhesion properties of soy protein with fiber cardboard. J. Am. Oil Chem. Soc. 78 (2001), 37–41.
[4] Imam, S.H.I., Bilbao-Sainz, C., Chiou, B.S., Glenna, G.M., Orts, W.J., Biobased adhesives, gums, emulsions, and binders: current trends and future prospects. J. Adhes. Sci. Technol. 27 (2012), 1972–1997.
[5] Norström, E., Fogelström, L., Nordqvist, P., Khabbaz, F., E. Malmström, E., Gum dispersions as environmentally friendly wood adhesives. Ind. Crop. Prod. 52 (2014), 736–744.
[6] Umemura, K., Inoue, A., Kawai, S., Development of new natural polymer-based wood adhesives I: dry bond strength and water resistance of konjac glucomannan, chitosan, and their composites. J. Wood Sci. 49 (2003), 221–226.
[7] Rehm, B.H.A., Microbial Production of Biopolymers and Polymer Precursors: Applications and Perspectives. 2009, Caister Academic Press, Norfolk, UK.
[9] Kim, J.T., Netravali, A.N., Performance of protein-based wood bioadhesives and development of small-scale test method for characterizing properties of adhesive-bonded wood specimens. J. Adhes. Sci. Technol. 27 (2013), 2083–2093.
[10] Graham, L.D., Glattauer, V., Huson, M.G., Maxwell, J.M., Knott, R.B., White, J.W., Vaughan, P.R., Peng, Y., Tyler, M.J., Werkmeister, J.A., Ramshaw, J.A., Characterization of a protein-based adhesive elastomer secreted by the Australian frog Notaden bennetti. Biomacromolecules 6 (2005), 3300–3312.
[11] Cruz, M.V., Araújo, D., Alves, V.D., Freitas, F., Reis, M.A.M., Characterization of medium chain length polyhydroxyalkanoate produced from olive oil deodorizer distillate. Int. J. Biol. Macromol. 82 (2016), 243–248.
[12] Kaur, G., Mahajan, M., Bassi, P., Derivatized polysaccharides: preparation, characterization and application as bioadhesive polymer for drug delivery. Int. J. Polym. Mater. 62 (2012), 475–481.
[13] Alves, V.D., Freitas, F., Torres, C.A.V., Cruz, M., Marques, R., Grandfils, C., Gonçalves, M.P., Oliveira, R., Reis, M.A.M., Rheological and morphological characterization of the culture broth during exopolysaccharide production by Enterobacter sp. Carbohydr. Polym. 81 (2010), 758–764.
[14] Freitas, F., Alves, V.D., Torres, C.A.V., Cruz, M., Sousa, I., Melo, M.J., Ramos, A.M., Reis, M.A.M., Fucose-containing exopolysaccharide produced by the newly isolated Enterobacter strain A47 DSM 23139. Carbohydr. Polym. 83 (2011), 159–165.
[15] Torres, C.A.V., Marques, R., Antunes, S., Alves, V.D., Sousa, I., Ramos, A.M., Oliveira, R., Freitas, F., Reis, M.A.M., Kinetics of production and characterization of the fucose-containing exopolysaccharide from Enterobacter A47. J. Biotechnol. 156 (2011), 261–267.
[16] Ferreira, A.R.V., Torres, C.A.V., Freitas, F., Reis, M.A.M., Alves, V.D., Coelhoso, I.M., Biodegradable films produced from the bacterial polysaccharide FucoPol. Int. J. Biol. Macromol. 71 (2014), 111–116.
[17] Freitas, F., Alves, V.D., Gouveia, A.R., Pinheiro, C., Torres, C.A.V., Grandfils, C., Reis, M.A.M., Controlled production of exopolysaccharides from Enterobacter A47 as a function of carbon source with demonstration of their film and emulsifying abilities. Appl. Biochem. Biotechnol. 172 (2014), 641–657.
[18] Torres, C.A.V., Antunes, S., Ricardo, A.R., Grandfils, C., Alves, V.D., Freitas, F., Reis, M.A.M., Study of the interactive effect of temperature and pH on exopolysaccharide production by Enterobacter A47 using multivariate statistical analysis. Bioresour. Technol. 119 (2012), 148–156.
[19] Cruz, M., Freitas, F., Torres, C.A.V., Reis, M.A.M., Alves, V.D., Influence of temperature on the rheological behavior of a new fucose-containing bacterial exopolysaccharide. Int. J. Biol. Macromol. 48 (2011), 695–699.
[20] Torres, C.A.V., Ferreira, A.R.V., Freitas, F., Reis, M.A.M., Coelhoso, I., Sousa, I., Alves, V.D., Rheological studies of the fucose-rich exopolysaccharide FucoPol. Int. J. Biol. Macromol. 79 (2015), 611–617.
[21] Arvidson, S.A., Rinehart, B.T., Gadala-Maria, F., Concentration regimes of solutions of levan polysaccharide from Bacillus sp. Carbohydr. Polym. 65 (2006), 144–149.
[22] Calero, N., Muñoz, J., Ramírez, P., Guerrero, A., Flow behaviour, linear viscoelasticity and surface properties of chitosan aqueous solutions. Food Hydrocolloids 24 (2010), 659–666.
[23] Wyatt, N.B., Liberatore, M.W., Rheology and viscosity scaling of the polyelectrolyte xanthan gum. J. Appl. Polym. Sci. 114 (2009), 4076–4084.
[24] Chenlo, F., Moreira, R., Silva, C., Rheological properties of aqueous dispersions of tragacanth and guar gums at different concentrations. J. Texture Stud. 41 (2010), 396–415.
[25] Alves, V.D., Ferreira, A.R., Costa, N., Freitas, F., Reis, M.A.M., Coelhoso, I.M., Characterization of biodegradable films from the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydr. Polym. 83 (2011), 1582–1590.
[26] Alves, V.D., Freitas, F., Costa, N., Carvalheira, M., Oliveira, R., Gonçalves, M.P., Reis, M.A.M., Effect of temperature on the dynamic and steady-shear rheology of a new microbial extracellular polysaccharide produced from glycerol byproduct. Carbohydr. Polym. 79 (2010), 981–988.
[27] Talukdar, M.M., Vinckier, I., Moldenaers, P., Kinget, R., Rheological characterization of xanthan gum and hydroxypropylmethyl cellulose with respect to controlled-release drug delivery. J. Pharm. Sci. 85 (1996), 537–540.
[28] Guillemenet, J., Bistac, S., Schultz, J., Relationship between polymer viscoelastic properties and adhesive behavior. Int. J. Adhes. Adhes. 22 (2002), 1–5.
[29] Sun, S., Li, M., Liu, A., A review on mechanical properties of pressure sensitive adhesives. Int. J. Adhes. Adhes. 41 (2013), 98–106.
[30] Li, R., Guo, X., Ekevad, M., Marklund, B., Cao, P., Investigation of glueline shear strength of pine wood bonded with PVAc by response surface methodology. BioResources 10 (2015), 3831–3838.
[31] Torro-Palau, A.M., Fernández-Garcia, J.C., Orgilés-Barceló, A.C., Martín-Martínez, J.M., Characterization of polyurethanes containing different silicas. Int. J. Adhes. Adhes. 21 (2001), 1–9.
[32] Patel, A.K., Michaud, P., Petit, E., Baynast, H., Grédiac, M., Mathias, J.D., Development of a chitosan-based Adhesive. Application to wood bonding. J. Appl. Polym. Sci. 127 (2012), 5014–5021.
[33] Ebnesajjad, S., Landrock, A.H., Adhesives Technology Handbook. third ed., 2014, William Andrew, 183–205.
[35] Mati-Baouche, N., Elchinger, P.H., Baynast, H., Pierre, G., Delattre, C., Michaud, P., Chitosan as an adhesive. Eur. Polym. J. 60 (2014), 198–212.
[36] J. Combi, A.P. Haag, P. Suci, G.G. Geesey, Adhesive produced by microorganisms, In Agricultural applications in green chemistry, ACS Symposium Series 887, American Chemical Society, W. Nelson, ed. Washington, DC, (2004), Chapter 5, p. 53–62.
[37] Labare, M.P., Guthrie, K., Weiner, R.M., Polysaccharide exopolymer adhesives from periphytic marine bacteria. J. Adhes. Sci. Technol. 3 (1989), 213–223.
[38] Wolf, R.A., Plastic Surface Modification: Treatment and Adhesion, Primary Polymer Adhesion Issues with Inks, Coatings and Adhesives. 2010, Hanser Publications, Munich/Cincinnati, 1–12.
[39] Yamada, K., Aoki, T., Ikeda, N., Hirata, M., Hata, Y., Higashida, K., Nakamura, Y., Application of chitosan solutions gelled by melB tyrosinase to water-resistant adhesives. J. Appl. Polym. Sci 107 (2008), 2723–2731.