A micellar electrokinetic chromatography–mass spectrometry approach using in-capillary diastereomeric derivatization for fully automatized chiral analysis of amino acids
Bodoki, Ede; University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca > Faculty of Pharmacy > Analytical chemsitry and instrumental analysis
Kacso, Timea; University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca > Faculty of Pharmacy > Analytical chemistry and instrumental analysis
Servais, Anne-Catherine ; Université de Liège > Département de pharmacie > Analyse des médicaments
Crommen, Jacques ; Université de Liège > Département de pharmacie > Département de pharmacie
Oprean, Radu; University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca > Faculty of Pharmacy > Analytical chemistry and instrumental analysis
Fillet, Marianne ; Université de Liège > Département de pharmacie > Analyse des médicaments
Language :
English
Title :
A micellar electrokinetic chromatography–mass spectrometry approach using in-capillary diastereomeric derivatization for fully automatized chiral analysis of amino acids
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
[1] Einarsson, S., Josefsson, B., Möller, P., Sanchez, D., Separation of amino acid enantiomers and chiral amines using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase liquid chromatography. Anal. Chem. 59 (1987), 1191–1195, 10.1021/ac00135a025.
[2] Campíns-Falcó, P., Verdú-Andrés, J., Herráez-Hernández, R., Separation of the enantiomers of primary and secondary amphetamines by liquid chromatography after derivatization with (−)-1-(9-fluorenyl)ethyl chloroformate. Chromatographia 57 (2003), 309–316, 10.1007/BF02492401.
[3] Hori, Y., Fujisawa, M., Shimada, K., Sato, M., Honda, M., Hirose, Y., Enantioselective analysis of glufosinate using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 776 (2002), 191–198, 10.1016/S1570-0232(02)00351-3.
[4] Gogami, Y., Okada, K., Oikawa, T., High-performance liquid chromatography analysis of naturally occurring D-amino acids in sake. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 879 (2011), 3259–3267, 10.1016/j.jchromb.2011.04.006.
[5] You, J., Liu, L., Zhao, W., Zhao, X., Suo, Y., Wang, H., et al. Study of a new derivatizing reagent that improves the analysis of amino acids by HPLC with fluorescence detection: application to hydrolyzed rape bee pollen. Anal. Bioanal. Chem. 387 (2007), 2705–2718, 10.1007/s00216-007-1155-9.
[6] Okuma, E., Abe, H., Simultaneous determination of D- and L-amino acids in the nervous tissues of crustaceans using precolumn derivatization with-(+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase ion-pair high-performance liquid chromatography. J. Chromatogr. B Biomed. Appl. 660 (1994), 243–250, 10.1016/0378-4347(94)00304-1.
[7] Aturki, Z., Vichi, F., Messina, A., Sinibaldi, M., Indirect resolution of beta-blocker agents by reversed-phase capillary electrochromatography. Electrophoresis 25 (2004), 607–614, 10.1002/elps.200305691.
[8] Wan, H., Andersson, P.E., Engström, A., Blomberg, L.G., Direct and indirect chiral separation of amino acids by capillary electrophoresis. J. Chromatogr. A 704 (1995), 179–193, 10.1016/0021-9673(95)00146-E.
[9] Fradi, I., Farcas, E., Ben Saïd, A., Yans, M.-L., Lamalle, C., Somsen, G.W., et al. In-capillary derivatization with (−)-1-(9-fluorenyl)ethyl chloroformate as chiral labeling agent for the electrophoretic separation of amino acids. J. Chromatogr. A, 2014, 1–10, 10.1016/j.chroma.2014.07.022.
[12] Erny, G.L., Cifuentes, A., Liquid separation techniques coupled with mass spectrometry for chiral analysis of pharmaceuticals compounds and their metabolites in biological fluids. J. Pharm. Biomed. Anal. 40 (2006), 509–515, 10.1016/j.jpba.2005.10.044.
[13] Moreno-González, D., Toraño, J.S., Gámiz-Gracia, L., García-Campaña, A.M., de Jong, G.J., Somsen, G.W., Micellar electrokinetic chromatography–electrospray ionization mass spectrometry employing a volatile surfactant for the analysis of amino acids in human urine. Electrophoresis 34 (2013), 2615–2622, 10.1002/elps.201300247.
[14] Czech, C., Berndt, P., Busch, K., Schmitz, O., Wiemer, J., Most, V., et al. Metabolite profiling of Alzheimer's disease cerebrospinal fluid. PLoS One, 7, 2012, e31501, 10.1371/journal.pone.0031501.
[15] Kaddurah-Daouk, R., Rozen, S., Matson, W., Han, X., Hulette, C.M., Burke, J.R., et al. Metabolomic changes in autopsy-confirmed Alzheimer's disease. Alzheimers Dement. 7 (2011), 309–317, 10.1016/j.jalz.2010.06.001.
[16] Lamzin, V.S., Dauter, Z., Wilson, K.S., How nature deals with stereoisomers. Curr. Opin. Struct. Biol. 5 (1995), 830–836, 10.1016/0959-440X(95)80018-2.
[17] Whitney, J.G., Grula, E.A., A major attachment site for D-serine in the cell wall mucopeptide of Micrococcus lysodeikticus. Biochim. Biophys. Acta Gen. Subj. 158 (1968), 124–129, 10.1016/0304-4165(68)90079-2.
[18] Schell, M.J., Molliver, M.E., Snyder, S.H., D-Serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc. Natl. Acad. Sci. U. S. A. 92 (1995), 3948–3952, 10.1073/pnas.92.9.3948.
[19] Hashimoto, A., Nishikawa, T., Oka, T., Takahashi, K., Endogenous D-serine in rat brain: N-methyl-D-aspartate receptor-related distribution and aging. J. Neurochem. 60 (1993), 783–786.
[20] Errico, F., Napolitano, F., Nisticò, R., Centonze, D., Usiello, A., D-Aspartate: an atypical amino acid with neuromodulatory activity in mammals. Rev. Neurosci. 20 (2009), 429–440, 10.1515/REVNEURO.2009.20.5-6.429.
[21] D'Aniello, A., D-Aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res. Rev. 53 (2007), 215–234, 10.1016/j.brainresrev.2006.08.005.
[22] Hamase, K., Homma, H., Takigawa, Y., Fukushima, T., Santa, T., Imai, K., Regional distribution and postnatal changes of D-amino acids in rat brain. Biochim. Biophys. Acta 1334 (1997), 214–222, 10.1016/S0304-4165(96)00095-5.
[23] Jako, T., Szabo, E., Tabi, T., Zachar, G., Csillag, A., Szoko, E., Chiral analysis of amino acid neurotransmitters and neuromodulators in mouse brain by CE-LIF. Electrophoresis 35 (2014), 2870–2876, 10.1002/elps.201400224.
[24] Rosenberg, D., Kartvelishvily, E., Shleper, M., Klinker, C.M.C., Bowser, M.T., Wolosker, H., Neuronal release of D-serine: a physiological pathway controlling extracellular D-serine concentration. FASEB J. 24 (2010), 2951–2961, 10.1096/fj.09-147967.
[25] Snyder, S.H., Kim, P.M., D-Amino acids as putative neurotransmitters: focus on D-serine. Neurochem. Res. 25 (2000), 553–560.
[26] Sánchez-Hernández, L., Domínguez-Vega, E., Montealegre, C., Castro-Puyana, M., Marina, M.L., Crego, A.L., Potential of vancomycin for the enantiomeric resolution of FMOC-amino acids by capillary electrophoresis-ion-trap-mass spectrometry. Electrophoresis 35 (2014), 1244–1250, 10.1002/elps.201300489.
[27] D.C. Durect Corporation, Preparation of Artificial CSF. 2016 http://www.alzet.com/products/guide_to_use/cfs_preparation.html.
[28] Ich, ICH topic Q2 (R1) validation of analytical procedures: text and methodology. Int. Conf. Harmon. 1994, 2005, 17 http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf.
[29] Schaefercor, W.H., Dixon, F., Effect of high-performance liquid chromatography mobile phase components on sensitivity in negative atmospheric pressure chemical ionization liquid chromatography-mass spectrometry. J. Am. Soc. Mass Spectrom. 7 (1996), 1059–1069, 10.1016/1044-0305(96)00049-9.
[30] Hommerson, P., Khan, A.M., de Jong, G.J., Somsen, G.W., Comparison of electrospray ionization and atmospheric pressure photoionization for coupling of micellar electrokinetic chromatography with ion trap mass spectrometry. J. Chromatogr. A 1204 (2008), 197–203, 10.1016/j.chroma.2008.04.017.
[32] Mokaddem, M., Gareil, P., Belgaied, J.E., Varenne, A., A new insight into suction and dilution effects in capillary electrophoresis coupled to mass spectrometry via an electrospray ionization interface. Part I—suction effect. Electrophoresis 29 (2008), 1957–1964, 10.1002/elps.200700880.
[33] Mokaddem, M., Gareil, P., Belgaied, J.E., Varenne, A., New insight into suction and dilution effects in CE coupled to MS via an ESI interface. II—dilution effect. Electrophoresis 30 (2009), 1692–1697, 10.1002/elps.200800480.
[34] Servais, A.C., Fillet, M., Mol, R., Somsen, G.W., Chiap, P., Jong, G.J.D., et al. On-line coupling of cyclodextrin mediated nonaqueous capillary electrophoresis to mass spectrometry for the determination of salbutamol enantiomers in urine. J. Pharm. Biomed. Anal. 40 (2006), 752–757, 10.1016/j.jpba.2005.08.004.
[35] Martin, G.B., Mansion, F., Servais, A.C., Debrus, B., Rozet, E., Hubert, P., et al. CE-MS method development for peptides analysis, especially hepcidin, an iron metabolism marker. Electrophoresis 30 (2009), 2624–2631, 10.1002/elps.200800794.
[36] Giuffrida, A., León, C., García-Cañas, V., Cucinotta, V., Cifuentes, A., Modified cyclodextrins for fast and sensitive chiral-capillary electrophoresis-mass spectrometry. Electrophoresis 30 (2009), 1734–1742, 10.1002/elps.200800333.
[37] Simó, C., Rizzi, A., Barbas, C., Cifuentes, A., Chiral capillary electrophoresis-mass spectrometry of amino acids in foods. Electrophoresis 26 (2005), 1432–1441, 10.1002/elps.200406199.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.