A micellar electrokinetic chromatography–mass spectrometry approach using in-capillary diastereomeric derivatization for fully automatized chiral analysis of amino acids
Bodoki, Ede; University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca > Faculty of Pharmacy > Analytical chemsitry and instrumental analysis
Kacso, Timea; University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca > Faculty of Pharmacy > Analytical chemistry and instrumental analysis
Servais, Anne-Catherine ; Université de Liège > Département de pharmacie > Analyse des médicaments
Crommen, Jacques ; Université de Liège > Département de pharmacie > Département de pharmacie
Oprean, Radu; University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca > Faculty of Pharmacy > Analytical chemistry and instrumental analysis
Fillet, Marianne ; Université de Liège > Département de pharmacie > Analyse des médicaments
Language :
English
Title :
A micellar electrokinetic chromatography–mass spectrometry approach using in-capillary diastereomeric derivatization for fully automatized chiral analysis of amino acids
[1] Einarsson, S., Josefsson, B., Möller, P., Sanchez, D., Separation of amino acid enantiomers and chiral amines using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase liquid chromatography. Anal. Chem. 59 (1987), 1191–1195, 10.1021/ac00135a025.
[2] Campíns-Falcó, P., Verdú-Andrés, J., Herráez-Hernández, R., Separation of the enantiomers of primary and secondary amphetamines by liquid chromatography after derivatization with (−)-1-(9-fluorenyl)ethyl chloroformate. Chromatographia 57 (2003), 309–316, 10.1007/BF02492401.
[3] Hori, Y., Fujisawa, M., Shimada, K., Sato, M., Honda, M., Hirose, Y., Enantioselective analysis of glufosinate using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 776 (2002), 191–198, 10.1016/S1570-0232(02)00351-3.
[4] Gogami, Y., Okada, K., Oikawa, T., High-performance liquid chromatography analysis of naturally occurring D-amino acids in sake. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 879 (2011), 3259–3267, 10.1016/j.jchromb.2011.04.006.
[5] You, J., Liu, L., Zhao, W., Zhao, X., Suo, Y., Wang, H., et al. Study of a new derivatizing reagent that improves the analysis of amino acids by HPLC with fluorescence detection: application to hydrolyzed rape bee pollen. Anal. Bioanal. Chem. 387 (2007), 2705–2718, 10.1007/s00216-007-1155-9.
[6] Okuma, E., Abe, H., Simultaneous determination of D- and L-amino acids in the nervous tissues of crustaceans using precolumn derivatization with-(+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase ion-pair high-performance liquid chromatography. J. Chromatogr. B Biomed. Appl. 660 (1994), 243–250, 10.1016/0378-4347(94)00304-1.
[7] Aturki, Z., Vichi, F., Messina, A., Sinibaldi, M., Indirect resolution of beta-blocker agents by reversed-phase capillary electrochromatography. Electrophoresis 25 (2004), 607–614, 10.1002/elps.200305691.
[8] Wan, H., Andersson, P.E., Engström, A., Blomberg, L.G., Direct and indirect chiral separation of amino acids by capillary electrophoresis. J. Chromatogr. A 704 (1995), 179–193, 10.1016/0021-9673(95)00146-E.
[9] Fradi, I., Farcas, E., Ben Saïd, A., Yans, M.-L., Lamalle, C., Somsen, G.W., et al. In-capillary derivatization with (−)-1-(9-fluorenyl)ethyl chloroformate as chiral labeling agent for the electrophoretic separation of amino acids. J. Chromatogr. A, 2014, 1–10, 10.1016/j.chroma.2014.07.022.
[12] Erny, G.L., Cifuentes, A., Liquid separation techniques coupled with mass spectrometry for chiral analysis of pharmaceuticals compounds and their metabolites in biological fluids. J. Pharm. Biomed. Anal. 40 (2006), 509–515, 10.1016/j.jpba.2005.10.044.
[13] Moreno-González, D., Toraño, J.S., Gámiz-Gracia, L., García-Campaña, A.M., de Jong, G.J., Somsen, G.W., Micellar electrokinetic chromatography–electrospray ionization mass spectrometry employing a volatile surfactant for the analysis of amino acids in human urine. Electrophoresis 34 (2013), 2615–2622, 10.1002/elps.201300247.
[14] Czech, C., Berndt, P., Busch, K., Schmitz, O., Wiemer, J., Most, V., et al. Metabolite profiling of Alzheimer's disease cerebrospinal fluid. PLoS One, 7, 2012, e31501, 10.1371/journal.pone.0031501.
[15] Kaddurah-Daouk, R., Rozen, S., Matson, W., Han, X., Hulette, C.M., Burke, J.R., et al. Metabolomic changes in autopsy-confirmed Alzheimer's disease. Alzheimers Dement. 7 (2011), 309–317, 10.1016/j.jalz.2010.06.001.
[16] Lamzin, V.S., Dauter, Z., Wilson, K.S., How nature deals with stereoisomers. Curr. Opin. Struct. Biol. 5 (1995), 830–836, 10.1016/0959-440X(95)80018-2.
[17] Whitney, J.G., Grula, E.A., A major attachment site for D-serine in the cell wall mucopeptide of Micrococcus lysodeikticus. Biochim. Biophys. Acta Gen. Subj. 158 (1968), 124–129, 10.1016/0304-4165(68)90079-2.
[18] Schell, M.J., Molliver, M.E., Snyder, S.H., D-Serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc. Natl. Acad. Sci. U. S. A. 92 (1995), 3948–3952, 10.1073/pnas.92.9.3948.
[19] Hashimoto, A., Nishikawa, T., Oka, T., Takahashi, K., Endogenous D-serine in rat brain: N-methyl-D-aspartate receptor-related distribution and aging. J. Neurochem. 60 (1993), 783–786.
[20] Errico, F., Napolitano, F., Nisticò, R., Centonze, D., Usiello, A., D-Aspartate: an atypical amino acid with neuromodulatory activity in mammals. Rev. Neurosci. 20 (2009), 429–440, 10.1515/REVNEURO.2009.20.5-6.429.
[21] D'Aniello, A., D-Aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res. Rev. 53 (2007), 215–234, 10.1016/j.brainresrev.2006.08.005.
[22] Hamase, K., Homma, H., Takigawa, Y., Fukushima, T., Santa, T., Imai, K., Regional distribution and postnatal changes of D-amino acids in rat brain. Biochim. Biophys. Acta 1334 (1997), 214–222, 10.1016/S0304-4165(96)00095-5.
[23] Jako, T., Szabo, E., Tabi, T., Zachar, G., Csillag, A., Szoko, E., Chiral analysis of amino acid neurotransmitters and neuromodulators in mouse brain by CE-LIF. Electrophoresis 35 (2014), 2870–2876, 10.1002/elps.201400224.
[24] Rosenberg, D., Kartvelishvily, E., Shleper, M., Klinker, C.M.C., Bowser, M.T., Wolosker, H., Neuronal release of D-serine: a physiological pathway controlling extracellular D-serine concentration. FASEB J. 24 (2010), 2951–2961, 10.1096/fj.09-147967.
[25] Snyder, S.H., Kim, P.M., D-Amino acids as putative neurotransmitters: focus on D-serine. Neurochem. Res. 25 (2000), 553–560.
[26] Sánchez-Hernández, L., Domínguez-Vega, E., Montealegre, C., Castro-Puyana, M., Marina, M.L., Crego, A.L., Potential of vancomycin for the enantiomeric resolution of FMOC-amino acids by capillary electrophoresis-ion-trap-mass spectrometry. Electrophoresis 35 (2014), 1244–1250, 10.1002/elps.201300489.
[27] D.C. Durect Corporation, Preparation of Artificial CSF. 2016 http://www.alzet.com/products/guide_to_use/cfs_preparation.html.
[28] Ich, ICH topic Q2 (R1) validation of analytical procedures: text and methodology. Int. Conf. Harmon. 1994, 2005, 17 http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf.
[29] Schaefercor, W.H., Dixon, F., Effect of high-performance liquid chromatography mobile phase components on sensitivity in negative atmospheric pressure chemical ionization liquid chromatography-mass spectrometry. J. Am. Soc. Mass Spectrom. 7 (1996), 1059–1069, 10.1016/1044-0305(96)00049-9.
[30] Hommerson, P., Khan, A.M., de Jong, G.J., Somsen, G.W., Comparison of electrospray ionization and atmospheric pressure photoionization for coupling of micellar electrokinetic chromatography with ion trap mass spectrometry. J. Chromatogr. A 1204 (2008), 197–203, 10.1016/j.chroma.2008.04.017.
[32] Mokaddem, M., Gareil, P., Belgaied, J.E., Varenne, A., A new insight into suction and dilution effects in capillary electrophoresis coupled to mass spectrometry via an electrospray ionization interface. Part I—suction effect. Electrophoresis 29 (2008), 1957–1964, 10.1002/elps.200700880.
[33] Mokaddem, M., Gareil, P., Belgaied, J.E., Varenne, A., New insight into suction and dilution effects in CE coupled to MS via an ESI interface. II—dilution effect. Electrophoresis 30 (2009), 1692–1697, 10.1002/elps.200800480.
[34] Servais, A.C., Fillet, M., Mol, R., Somsen, G.W., Chiap, P., Jong, G.J.D., et al. On-line coupling of cyclodextrin mediated nonaqueous capillary electrophoresis to mass spectrometry for the determination of salbutamol enantiomers in urine. J. Pharm. Biomed. Anal. 40 (2006), 752–757, 10.1016/j.jpba.2005.08.004.
[35] Martin, G.B., Mansion, F., Servais, A.C., Debrus, B., Rozet, E., Hubert, P., et al. CE-MS method development for peptides analysis, especially hepcidin, an iron metabolism marker. Electrophoresis 30 (2009), 2624–2631, 10.1002/elps.200800794.
[36] Giuffrida, A., León, C., García-Cañas, V., Cucinotta, V., Cifuentes, A., Modified cyclodextrins for fast and sensitive chiral-capillary electrophoresis-mass spectrometry. Electrophoresis 30 (2009), 1734–1742, 10.1002/elps.200800333.
[37] Simó, C., Rizzi, A., Barbas, C., Cifuentes, A., Chiral capillary electrophoresis-mass spectrometry of amino acids in foods. Electrophoresis 26 (2005), 1432–1441, 10.1002/elps.200406199.