[en] Some mutations of the LRRK2 gene underlie autosomal dominant form of Parkinson's disease (PD). The G2019S is a common mutation that accounts for about 2% of PD cases. To understand the pathophysiology of this mutation and its possible developmental implications, we developed an in vitro assay to model PD with human induced pluripotent stem cells (hiPSCs) reprogrammed from skin fibroblasts of PD patients suffering from the LRKK2 G2019S mutation. We differentiated the hiPSCs into neural stem cells (NSCs) and further into dopaminergic neurons. Here we show that NSCs bearing the mutation tend to differentiate less efficiently into dopaminergic neurons and that the latter exhibit significant branching defects as compared to their controls.
Pringsheim, T., Jette, N., Frolkis, A. & Steeves, T. D. The prevalence of Parkinsons disease: A systematic review and meta-Analysis. Mov Disord 29, 1583-1590, doi: 10.1002/mds.25945 (2014).
Marsden, C. D. Parkinsons disease. Lancet 335, 948-952 (1990).
Ehringer, H. & Hornykiewicz, O. [Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system]. Klin Wochenschr 38, 1236-1239 (1960).
Lang, A. E. & Lozano, A. M. Parkinsons disease. First of two parts. N Engl J Med 339, 1044-1053, doi: 10.1056/NEJM199810083391506 (1998).
Lesage, S. & Brice, A. Parkinsons disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 18, R48-59, doi: 10.1093/hmg/ddp012 (2009).
Toulouse, A. & Sullivan, A. M. Progress in Parkinsons disease-where do we stand? Prog Neurobiol 85, 376-392, doi: 10.1016/j. pneurobio.2008.05.003 (2008).
Lin, M. K. & Farrer, M. J. Genetics and genomics of Parkinsons disease. Genome Med 6, 48, doi: 10.1186/gm566 (2014).
Trinh, J. & Farrer, M. Advances in the genetics of Parkinson disease. Nat Rev Neurol 9, 445-454, doi: 10.1038/nrneurol.2013.132 (2013).
Volta, M., Milnerwood, A. J. & Farrer, M. J. Insights from late-onset familial parkinsonism on the pathogenesis of idiopathic Parkinsons disease. Lancet Neurol 14, 1054-1064, doi: 10.1016/S1474-4422(15)00186-6 (2015).
Paisan-Ruiz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinsons disease. Neuron 44, 595-600, doi: 10.1016/j.neuron.2004.10.023 (2004).
Zimprich, A. et al. The PARK8 locus in autosomal dominant parkinsonism: confirmation of linkage and further delineation of the disease-containing interval. Am J Hum Genet 74, 11-19, doi: 10.1086/380647 (2004).
Hulihan, M. M. et al. LRRK2 Gly2019Ser penetrance in Arab-Berber patients from Tunisia: A case-control genetic study. Lancet Neurol 7, 591-594, doi: 10.1016/S1474-4422(08)70116-9 (2008).
Ross, O. A. et al. Association of LRRK2 exonic variants with susceptibility to Parkinsons disease: A case-control study. Lancet Neurol 10, 898-908, doi: 10.1016/S1474-4422(11)70175-2 (2011).
Healy, D. G. et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-Associated Parkinsons disease: A case-control study. Lancet Neurol 7, 583-590, doi: 10.1016/S1474-4422(08)70117-0 (2008).
Greggio, E. et al. The Parkinson disease-Associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J Biol Chem 283, 16906-16914, doi: 10.1074/jbc.M708718200 (2008).
Greggio, E. et al. The Parkinsons disease kinase LRRK2 autophosphorylates its GTPase domain at multiple sites. Biochem Biophys Res Commun 389, 449-454, doi: 10.1016/j.bbrc.2009.08.163 (2009).
West, A. B. et al. Parkinsons disease-Associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA 102, 16842-16847, doi: 10.1073/pnas.0507360102 (2005).
Greggio, E. et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis 23, 329-341, doi: 10.1016/j.nbd.2006.04.001 (2006).
Gloeckner, C. J. et al. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet 15, 223-232, doi: 10.1093/hmg/ddi439 (2006).
Gandhi, P. N. et al. The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules. J Neurosci Res 86, 1711-1720, doi: 10.1002/jnr.21622 (2008).
Gillardon, F. Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability-A point of convergence in parkinsonian neurodegeneration? J Neurochem 110, 1514-1522, doi: 10.1111/j.1471-4159.2009.06235.x (2009).
MacLeod, D. et al. The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 52, 587-593, doi: 10.1016/j.neuron.2006.10.008 (2006).
Plowey, E. D., Cherra, S. J. 3rd, Liu, Y. J. & Chu, C. T. Role of autophagy in G2019S-LRRK2-Associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 105, 1048-1056, doi: 10.1111/j.1471-4159.2008.05217.x (2008).
Parisiadou, L. et al. Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci 29, 13971-13980, doi: 10.1523/JNEUROSCI.3799-09.2009 (2009).
Sanchez-Danes, A. et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinsons disease. EMBO Mol Med 4, 380-395, doi: 10.1002/emmm.201200215 (2012).
Blesa, J., Trigo-Damas, I., Quiroga-Varela, A. & Jackson-Lewis, V. R. Oxidative stress and Parkinsons disease. Front Neuroanat 9, 91, doi: 10.3389/fnana.2015.00091 (2015).
Schapira, A. H. Mitochondria in the aetiology and pathogenesis of Parkinsons disease. Lancet Neurol 7, 97-109, doi: 10.1016/S1474-4422(07)70327-7 (2008).
Park, I. H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877-886, doi: 10.1016/j.cell.2008.07.041 (2008).
Soldner, F. et al. Parkinsons disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964-977, doi: 10.1016/j.cell.2009.02.013 (2009).
Pacelli, C. et al. Elevated Mitochondrial Bioenergetics and Axonal Arborization Size Are Key Contributors to the Vulnerability of Dopamine Neurons. Curr Biol 25, 2349-2360, doi: 10.1016/j.cub.2015.07.050 (2015).
Akhmanova, A. & Hoogenraad, C. C. Microtubule plus-end-Tracking proteins: mechanisms and functions. Curr Opin Cell Biol 17, 47-54, doi: 10.1016/j.ceb.2004.11.001 (2005).
Brennand, K. J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221-225, doi: 10.1038/nature09915 (2011).
Hartfield, E. M. et al. Physiological characterisation of human iPS-derived dopaminergic neurons. PLoS One 9, e87388, doi: 10.1371/journal.pone.0087388 (2014).
Andersson, E. et al. Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124, 393-405, doi: 10.1016/j. cell.2005.10.037 (2006).
Lee, H. S. et al. Foxa2 and Nurr1 synergistically yield A9 nigral dopamine neurons exhibiting improved differentiation, function, and cell survival. Stem Cells 28, 501-512, doi: 10.1002/stem.294 (2010).
Nakatani, T. et al. Lmx1a and Lmx1b cooperate with Foxa2 to coordinate the specification of dopaminergic neurons and control of floor plate cell differentiation in the developing mesencephalon. Dev Biol 339, 101-113, doi: 10.1016/j.ydbio.2009.12.017 (2010).
Richards, C. D., Shiroyama, T. & Kitai, S. T. Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat. Neuroscience 80, 545-557 (1997).
Engel, M., Do-Ha, D., Munoz, S. S. & Ooi, L. Common pitfalls of stem cell differentiation: A guide to improving protocols for neurodegenerative disease models and research. Cell Mol Life Sci, doi: 10.1007/s00018-016-2265-3 (2016).
Reinhardt, P. et al. Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERKdependent changes in gene expression. Cell Stem Cell 12, 354-367, doi: 10.1016/j.stem.2013.01.008 (2013).
Cooper, O. et al. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinsons disease. Sci Transl Med 4, 141ra190, doi: 10.1126/scitranslmed.3003985 (2012).
Avila, J., Lucas, J. J., Perez, M. & Hernandez, F. Role of tau protein in both physiological and pathological conditions. Physiol Rev 84, 361-384, doi: 10.1152/physrev.00024.2003 (2004).
Kawakami, F. et al. LRRK2 phosphorylates tubulin-Associated tau but not the free molecule: LRRK2-mediated regulation of the tautubulin association and neurite outgrowth. PLoS One 7, e30834, doi: 10.1371/journal.pone.0030834 (2012).
Galjart, N. Plus-end-Tracking proteins and their interactions at microtubule ends. Curr Biol 20, R528-537, doi: 10.1016/j. cub.2010.05.022 (2010).
Zhu, J. H. et al. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridiniuminduced cell death. Am J Pathol 170, 75-86, doi: 10.2353/ajpath.2007.060524 (2007).
Schwab, A. J. & Ebert, A. D. Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinsons Disease-Related LRRK2 G2019S Mutation. Stem Cell Reports 5, 1039-1052, doi: 10.1016/j.stemcr.2015.11.004 (2015).
Menzies, F. M., Moreau, K. & Rubinsztein, D. C. Protein misfolding disorders and macroautophagy. Curr Opin Cell Biol 23, 190-197, doi: 10.1016/j.ceb.2010.10.010 (2011).
Yang, Q. & Mao, Z. Parkinson disease: A role for autophagy? Neuroscientist 16, 335-341, doi: 10.1177/1073858409357118 (2010).
Pissadaki, E. K. & Bolam, J. P. The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinsons disease. Front Comput Neurosci 7, 13, doi: 10.3389/fncom.2013.00013 (2013).
Parent, M. & Parent, A. Relationship between axonal collateralization and neuronal degeneration in basal ganglia. J Neural Transm Suppl, 85-88 (2006).
Bolam, J. P. & Pissadaki, E. K. Living on the edge with too many mouths to feed: why dopamine neurons die. Mov Disord 27, 1478-1483, doi: 10.1002/mds.25135 (2012).
Matsuda, W. et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29, 444-453, doi: 10.1523/JNEUROSCI.4029-08.2009 (2009).