R. Edgar, M. Domrachev, A. E. Lash, "Gene expression omnibus: Ncbi gene expression and hybridization array data repository, " Nucleic acids research, vol. 30, no. 1, pp. 207-210, 2002.
A. Brazma, H. Parkinson, U. Sarkans, M. Shojatalab, J. Vilo, N. Abeygunawardena, E. Holloway, M. Kapushesky, P. Kemmeren, G. G. Lara, et al., "Arrayexpress-a public repository for microarray gene expression data at the ebi, " Nucleic acids research, vol. 31, no. 1, pp. 68-71, 2003.
D. Marbach, J. C. Costello, R. Kuffner, N. M. Vega, R. J. Prill, D. M. Camacho, K. R. Allison, M. Kellis, J. J. Collins, G. Stolovitzky, •, et al., "Wisdom of crowds for robust gene network inference, " Nature methods, vol. 9, no. 8, pp. 796-804, 2012.
J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J. J. Collins, T. S. Gardner, "Largescale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles, " PLoS biology, vol. 5, no. 1, p. e8, 2007.
A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. D. Favera, A. Califano, "Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context, " BMC bioinformatics, vol. 7, no. Suppl 1, p. S7, 2006.
P. E. Meyer, F. Lafitte, G. Bontempi, "Minet: An open source r/bioconductor package for mutual information based network inference, " BMC Bioinformatics, vol. 9, 2008.
K. G. Kugler, L. A. Mueller, A. Graber, M. Dehmer, "Integrative network biology: graph prototyping for co-expression cancer networks, " PLoS One, vol. 6, no. 7, p. e22843, 2011.
J. Taminau, S. Meganck, C. Lazar, D. Steenhoff, A. Coletta, C. Molter, R. Duque, V. de Schaetzen, D. Y. W. Sols, H. Bersini, et al., "Unlocking the potential of publicly available microarray data using insilicodb and insilicomerging r/bioconductor packages, " BMC bioinformatics, vol. 13, no. 1, p. 335, 2012.
W. Huber, A. Von Heydebreck, H. Sultmann, A. Poustka, M. Vingron, "Variance stabilization applied to microarray data calibration and to the quantification of differential expression, " Bioinformatics, vol. 18, no. suppl 1, pp. S96-S104, 2002.
V. Belcastro, V. Siciliano, F. Gregoretti, P. Mithbaokar, G. Dharmalingam, S. Berlingieri, F. Iorio, G. Oliva, R. Polishchuck, N. Brunetti-Pierri, et al., "Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function, " Nucleic acids research, vol. 39, no. 20, pp. 8677-8688, 2011.
P. Adler, R. Kolde, M. Kull, A. Tkachenko, H. Peterson, J. Reimand, J. Vilo, "Mining for coexpression across hundreds of datasets using novel rank aggregation and visualization methods, " Genome biology, vol. 10, no. 12, p. R139, 2009.
J. T. Leek, R. B. Scharpf, H. C. Bravo, D. Simcha, B. Langmead, W. E. Johnson, D. Geman, K. Baggerly, R. A. Irizarry, "Tackling the widespread and critical impact of batch effects in high-throughput data, " Nature Reviews Genetics, vol. 11, no. 10, pp. 733-739, 2010.
R. A. Irizarry, B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, U. Scherf, T. P. Speed, "Exploration, normalization, summaries of high density oligonucleotide array probe level data, " Biostatistics, vol. 4, no. 2, pp. 249-264, 2003.
L. Dyrskj, M. Kruhfer, T. Thykjaer, N. Marcussen, J. L. Jensen, K. Mler, T. F. Rntoft, "Gene expression in the urinary bladder a common carcinoma in situ gene expression signature exists disregarding histopathological classification, " Cancer Research, vol. 64, no. 11, pp. 4040-4048, 2004.
W. E. Johnson, C. Li, A. Rabinovic, "Adjusting batch effects in microarray expression data using empirical bayes methods, " Biostatistics, vol. 8, no. 1, pp. 118-127, 2007.
T. Hase, S. Ghosh, R. Yamanaka, H. Kitano, "Harnessing diversity towards the reconstructing of large scale gene regulatory networks, " PLoS Comput Biol, vol. 9, no. 11, p. e1003361, 2013.
D. D. Kang, E. Sibille, N. Kaminski, G. C. Tseng, "Metaqc: objective quality control and inclusion/exclusion criteria for genomic meta-analysis, " Nucleic acids research, vol. 40, no. 2, pp. e15-e15, 2012.
A. Ramasamy, A. Mondry, C. C. Holmes, D. G. Altman, "Key issues in conducting a meta-analysis of gene expression microarray datasets, " PLoS medicine, vol. 5, no. 9, p. e184, 2008.
P. Wirapati, C. Sotiriou, S. Kunkel, P. Farmer, S. Pradervand, B. Haibe-Kains, C. Desmedt, M. Ignatiadis, T. Sengstag, F. Schutz, et al., "Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures, " Breast Cancer Res, vol. 10, no. 4, p. R65, 2008.
C. Desmedt, B. Haibe-Kains, P. Wirapati, M. Buyse, D. Larsimont, G. Bontempi, M. Delorenzi, M. Piccart, C. Sotiriou, "Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes, " Clinical Cancer Research, vol. 14, no. 16, pp. 5158-5165, 2008.
F. Hong, R. Breitling, C. W. McEntee, B. S. Wittner, J. L. Nemhauser, J. Chory, "Rankprod: a bioconductor package for detecting differentially expressed genes in meta-analysis, " Bioinformatics, vol. 22, no. 22, pp. 2825-2827, 2006.
V. Cestarelli, G. Fiscon, G. Felici, P. Bertolazzi, E. Weitschek, "Camur: Knowledge extraction from rna-seq cancer data through equivalent classification rules, " Bioinformatics, p. btv635, 2015.
C. Ding and H. Peng, "Minimum redundancy feature selection from microarray gene expression data, " Journal of bioinformatics and computational biology, vol. 3, no. 02, pp. 185-205, 2005.
A. H. Sims, G. J. Smethurst, Y. Hey, M. J. Okoniewski, S. D. Pepper, A. Howell, C. J. Miller, R. B. Clarke, "The removal of multiplicative, systematic bias allows integration of breast cancer gene expression datasets-improving meta-analysis and prediction of prognosis, " BMC medical genomics, vol. 1, no. 1, p. 1, 2008.
C. Cheadle, M. P. Vawter, W. J. Freed, K. G. Becker, "Analysis of microarray data using z score transformation, " The Journal of molecular diagnostics, vol. 5, no. 2, pp. 73-81, 2003.
C. Chen, K. Grennan, J. Badner, D. Zhang, E. Gershon, L. Jin, C. Liu, "Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods, " PloS one, vol. 6, no. 2, p. e17238, 2011.
C. Lazar, S. Meganck, J. Taminau, D. Steenhoff, A. Coletta, C. Molter, D. Y. Weiss-Sols, R. Duque, H. Bersini, A. Nowe, "Batch effect removal methods for microarray gene expression data integration: a survey, " Briefings in bioinformatics, p. bbs037, 2012.
P. Bellot Pujalte, P. J. Salembier Clairon, A. Oliveras Verges, P. Meyer, "Study of normalization and aggregation approaches for consensus network estimation, " in IEEE SSCI 2015: 2015 IEEE Symposium Series on Computational Intelligence; 7-10 December 2015, Cape Town, South Afrika, pp. 1-6, Institute of Electrical and Electronics Engineers (IEEE), 2015.
K. Wang, M. Narayanan, H. Zhong, M. Tompa, E. E. Schadt, J. Zhu, "Meta-analysis of inter-species liver co-expression networks elucidates traits associated with common human diseases, " PLoS Comput Biol, vol. 5, no. 12, p. e1000616, 2009.
F. L. Schmidt and J. E. Hunter, Methods of meta-analysis: Correcting error and bias in research findings. Sage publications, 2014.
P. Bellot, C. Olsen, P. Salembier, A. Oliveras-Verges, P. E Meyer, "Netbenchmark: A bioconductor package for reproducible benchmarks of gene regulatory network inference, " Sutmitted, 2015.