[en] Ikaite precipitation within sea ice could act as a significant sink for atmospheric CO2. However, the fate of these ikaite crystals is still poorly understood. We quantify temporal inorganic carbon dynamics from initial sea ice formation from open water to its melt during a month-long experiment in a sea ice-seawater mesocosm pool. Within sea ice, ikaite precipitation and CO2 exchange with the atmosphere were the main processes affecting inorganic carbon dynamics, while the dissolution of ikaite was the main process affecting inorganic carbon dynamics in the underlying seawater. Based on the total alkalinity (TA) and total dissolved inorganic carbon (TCO2) within sea ice and seawater, we estimated ikaite precipitated up to 167 ± 3 µmol kg-1 within sea ice; up to 57 % of the ikaite precipitated within sea ice was exported to the underlying seawater where it was dissolved. Ikaite export from the ice to the underlying seawater was associated with brine rejection during sea ice growth, increased sea ice vertical connectivity due to the upward percolation of seawater, and meltwater flushing during sea ice melt. The dissolution of the ikaite crystals in the water column kept the seawater pCO2 undersaturated compared to the atmosphere in spite of increased salinity, TA, and TCO2 associated with sea ice growth. Results indicate that ikaite export from sea ice and its dissolution in the underlying seawater can potentially hamper the effect of oceanic acidification on the aragonite saturation state (Ωaragonite) in fall and winter in ice-covered areas, at the time when Ωaragonite is smallest.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Geilfus, N.-X.
Galley, R. J.
Else, B. G. T.
Papakyriakou, T.
Crabeck, O.
Lemes, M.
Delille, Bruno ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Rysgaard, S.
Language :
English
Title :
Impacts of ikaite export from sea ice to the underlying seawater in a sea ice-seawater mesocosm
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bates, N. R. and Mathis, J. T. : The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks, Biogeosciences, 6, 2433-2459, doi:10. 5194/bg-6-2433-2009, 2009.
Bates, N. R., Cai, W. J., and Mathis, J. T. : The ocean carbon cycle in the western Arctic Ocean: Distributions and air-sea fluxes of carbon dioxide, Oceanography, 24, 186-201, 2011.
Bates, N. R., Garley, R., Frey, K. E., Shake, K. L., and Mathis, J. T. : Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean: meltwater contributions to air-sea CO2 gas exchange, mixed-layer properties and rates of net community production under sea ice, Biogeosciences, 11, 6769-6789, doi:10. 5194/bg-11-6769-2014, 2014.
Chierici, M. and Fransson, A. : Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves, Biogeosciences, 6, 2421-2431, doi:10. 5194/bg-6-2421-2009, 2009.
Chierici, M., Fransson, A., Lansard, B., Miller, L. A., Mucci, A., Shadwick, E., Thomas, E., Tremblay, J. E., and Papakyriakou, T. : The impact of biogeochemical processes and environmental factors on the calcium carbonate saturation state in the Circumpolar Flaw Lead in the Amundsen Gulf, Arctic Ocean, J. Geophys. Res., 116, C00G09, doi:10. 1029/2011JC007184, 2011.
Copin-Montégut, C. : A new formula for the effect of temperature on the partial pressure of carbon dioxide in seawater, Mar. Chem., 25, 29-37, 1988.
Cox, G. F. N. and Weeks, W. F. : Equations for determining the gas and brine volumes in sea-ice samples, J. Glaciol., 29, 306-316, 1983.
Delille, B., Vancoppenolle, M., Geilfus, N.-X., Tilbrook, B., Lannuzel, D., Schoemann, V., Becquevort, S., Carnat, G., Delille, D., Lancelot, C., Chou, L., Dieckmann, G. S., and Tison, J.-L. : Southern Ocean CO2 sink: The contribution of the sea ice, J. Geophys. Res.-Oceans, 119, 6340-6355, 2014.
Dieckmann, G. S., Nehrke, G., Papadimitriou, S., Gottlicher, J., Steininger, R., Kennedy, H., Wolf-Gladrow, D., and Thomas, D. N. : Calcium carbonate as ikaite crystals in Antarctic sea ice, Geophys. Res. Lett., 35, L08501, doi:10. 1029/2008GL033540, 2008.
DOE: Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2, edited by: Dickson, A. G. and Goyet C., ORNL/CDIAC-74, 1994.
Ducklow, H. W. : Seasonal production and bacterial utilization of DOC in the Ross Sea, Antarctica, Biogeochemistry of the Ross Sea, 78, 143-158, 2003.
Else, B. G. T., Papakyriakou, T., Galley, R., Drennan, W. M., Miller, L. A., and Thomas, H. : Wintertime CO2 fluxes in an Arctic polynya using eddy covariance: Evidence for enhanced air-gas transfer during ice formation, J. Geophys. Res., 116, C00G03, doi:10. 1029/2010JC006760, 2011.
Else, B. G. T., Galley, R. J., Lansard, B., Barber, D. G., Brown, K., Miller, L. A., Mucci, A., Papakyriakou, T. N., Tremblay, J. E., and Rysgaard, S. : Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss, Geophys. Res. Lett., 40, 1132-1137, 2013.
Else, B. G. T., Rysgaard, S., Attard, K., Campbell, K., Crabeck, O., Galley, R. J., Geilfus, N. X., Lemes, M., Lueck, R., Papakyriakou, T., andWang, F. : Under-ice eddy covariance flux measurements of heat, salt, momentum, and dissolved oxygen in an artificial sea ice pool, Cold Reg. Sci. Technol., 119, 158-169, 2015.
Frankignoulle, M. : Field-Measurements of Air Sea CO2 Exchange, Limnol. Oceanogr., 33, 313-322, 1988.
Fransson, A., Chierici, M., Miller L. A., Carnat G., Shadwick, E., Thomas, H., Pineault, S., and Papakyriakou, T. N. : Impact of seaice processes on the carbonate system and ocean acidification at the ice-water interface of the Amundsen Gulf, Arctic Ocean, J. Geophys. Res.-Oceans, 118, 7001-7023, 2013.
Galley, R. J., Else, B. G. T., Geilfus, N. X., Hare, A. A., Isleifson, D., Barber, D. G., and Rysgaard, S. : Imaged brine inclusions in young sea ice-Shape, distribution and formation timing, Cold Reg. Sci. Technol., 111, 39-48, 2015.
Garneau, M. È., Vincent, W. F., Alonso-Saéz L., Gratton, Y., and Lovejoy, C. : Prokaryotic community structure and heterotrophic production in a river-influenced coastal arctic ecosystem, Aquat. Microb. Ecol., 32, 27-40, 2006.
Geilfus, N.-X., Carnat, G., Papakyriakou, T., Tison, J. L., Else, B., Thomas, H., Shadwick, E., and Delille, B. : Dynamics of pCO2 and related air-ice CO2 fluxes in the Arctic coastal zone (Amundsen Gulf, Beaufort Sea), J. Geophys. Res., 117, C00G10, doi:10. 1029/2011JC007118, 2012.
Geilfus, N.-X., Carnat, G., Dieckmann, G. S., Halden, N., Nehrke, G., Papakyriakou, T., Tison, J. L., and Delille, B. : First estimates of the contribution of CaCO3 precipitation to the release of CO2 to the atmosphere during young sea ice growth, J. Geophys. Res.-Oceans, 118, 244-255, doi:10. 1029/2012JC007980, 2013a.
Geilfus, N.-X., Galley, R. J., Cooper, M., Halden, N., Hare, A., Wang, F., Søgaard, D. H., and Rysgaard, S. : Gypsum crystals observed in experimental and natural sea ice, Geophys. Res. Lett., 40, 6362-6367, doi:10. 1002/2013GL058479, 2013b.
Geilfus, N.-X., Tison, J.-L., Ackley, S. F., Galley, R. J., Rysgaard, S., Miller, L. A., and Delille, B. : Sea ice pCO2 dynamics and air-ice CO2 fluxes during the Sea Ice Mass Balance in the Antarctic (SIMBA) experiment-Bellingshausen Sea, Antarctica, The Cryosphere, 8, 2395-2407, doi:10. 5194/tc-8-2395-2014, 2014.
Geilfus, N.-X., Galley, R. J., Crabeck, O., Papakyriakou, T., Landy, J., Tison, J.-L., and Rysgaard, S. : Inorganic carbon dynamics of melt-pond-covered first-year sea ice in the Canadian Arctic, Biogeosciences, 12, 2047-2061, doi:10. 5194/bg-12-2047-2015, 2015.
Golden, K. M., Eicken, H., Heaton, A. L., Miner, J., Pringle, D. J., and Zhu, J. : Thermal evolution of permeability and microstructure in sea ice, Geophys. Res. Lett., 34, L16501, doi:10. 1029/2007GL030447, 2007.
Goyet, C. and Poisson, A. : New determination of carbonic acid dissociation constants in seawater as a function of temperature and salinity, Deep-Sea Res., 36, 1635-1654, 1989.
Grasshoff, K., Ehrhardt, M., and Kremling, K. : Methods of sea water analysis, Verlag Chemie, 1983.
Hansen, J. W., Thamdrup, B., and Jørgensen, B. B. : Anoxic incubation of sediment in gas-tight plastic bags: a method for biogeochemical processes studies, Mar. Ecol.-Prog. Ser., 208, 273-282, 2000.
Haraldsson, C., Anderson, L. G., Hassellov, M., Hulth, S., and Olsson, K. : Rapid, high-precision potentiometric titration of alkalinity in ocean and sediment pore waters, Deep-Sea Res. Pt. I, 44, 2031-2044, 1997.
Hare, A. A., Wang, F., Barber, D., Geilfus, N. X., Galley, R. J., and Rysgaard, S. : pH Evolution in sea ice grown at an outdoor experimental facility, Mar. Chem., 154, 46-54, 2013.
Johnson, K. M., Sieburth, J. M., Williams, P. J. L., and Brandstrom, L. : Coulometric total carbon-dioxide analysis for marine studies-automation and calibration, Mar. Chem., 21, 117-133, 1987.
Killawee, J. A., Fairchild, I. J., Tison, J. L., Janssens, L., and Lorrain, R. : Segregation of solutes and gases in experimental freezing of dilute solutions: Implications for natural glacial systems, Geochim. Cosmochim. Ac., 62, 3637-3655, 1998.
Kirchmann, D. L. : Leucine incorporation as a measure of biomass production by heterotrophic bacteria, in: Handbook of Methods in Aquatic Microbial Ecology, Chap. 58, 509-518, 1993.
Kirchmann, D. L. : Measuring bacterial biomass production and growth rates from Leucine incorporation in natural aquatic environments in: Methods in Microbiology, Chap. 12, 227-237, 2001.
Leppäranta, M. and Manninen, T. : The brine and gas content of sea ice with attention to low salinities and high temperatures, Finnish Institute of Marine Research, Helsinki, Finland, Internal Report, 1988-2, 15 pp., 1988.
Loose, B., McGillis, W. R., Perovich, D., Zappa, C. J., and Schlosser, P. : A parameter model of gas exchange for the seasonal sea ice zone, Ocean Sci., 10, 17-28, doi:10. 5194/os-10-17-2014, 2014.
MacGilchrist, G. A., Garabato, A. C. N., Tsubouchi, T., Bacon, S., Torres-Valdes, S., and Azetsu-Scott, K. : The Arctic Ocean carbon sink, Deep-Sea Res. Pt. I, 86, 39-55, 2014.
Marion, G. M. : Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system, Geochim. Cosmochim. Ac., 65, 1883-1896, 2001.
Miller, L. A., Papakyriakou, T., Collins, R. E., Deming, J., Ehn, J., Macdonald, R. W., Mucci, A., Owens, O., Raudsepp, M., and Sutherland, N. : Carbon dynamics in sea ice: A winter flux time series, J. Geophys. Res., 116, C02028, doi:10. 1029/2009JC006058, 2011.
Nomura, D., Eicken, H., Gradinger, R., and Shirasawa, K. : Rapid physically driven inversion of the air-sea ice CO2 flux in the seasonal landfast ice off Barrow, Alaska after onset surface melt, Cont. Shelf Res., 30, 1998-2004, 2010.
Nomura, D., Granskog, M. A., Assmy, P., Simizu, D., and Hashida, G. : Arctic and Antarctic sea ice acts as a sink for atmospheric CO2 during periods of snowmelt and surface flooding, J. Geophys. Res.-Oceans, 118, 6511-6524, doi:10. 1002/2013JC009048, 2013.
Papadimitriou, S., Kennedy, H., Kattner, G., Dieckmann, G. S., and Thomas, D. N. : Experimental evidence for carbonate precipitation and CO2 degassing during sea ice formation, Geochim. Cosmochim Ac., 68, 1749-1761, 2004.
Papakyriakou, T. and Miller, L. : Springtime CO2 exchange over seasonal sea ice in the Canadian Arctic Archipelago, Ann. Glaciol., 52, 215-224, doi:10. 3189/172756411795931534, 2011.
Parmentier, F.-J. W., Christensen, T. R., Sørensen, L. L., Rysgaard, S., McGuire, A. D., Miller, P. A., and Walker, D. A. : The impact of lower sea-ice extent on Arctic greenhouse-gas exchange, Nature Climate Change, 3, 195-202, doi:10. 1038/nclimate1784, 2013.
Parsons, T. R., Maita, Y., and Lali, C. M. : A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon Press, Toronto, 1984.
Pierrot, D., Lewis, E., and Wallace, D. W. R. : MS Excel Program Developed for CO2 System Calculations, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U. S. Department of Energy, Oak Ridge, Tennessee, doi:10. 3334/CDIAC/otg. CO2SYS-XLS-CDIAC105a, 2006.
Popova, E. E., Yool, A., Aksenov, Y., Coward, A. C., and Anderson, T. R. : Regional variability of acidification in the Arctic: a sea of contrasts, Biogeosciences, 11, 293-308, doi:10. 5194/bg-11-293-2014, 2014.
Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J., and Christensen, P. B. : Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas, J. Geophys. Res., 112, C03016, doi:10. 1029/2006JC003572, 2007.
Rysgaard, S., Bendtsen, J., Pedersen, L. T., Ramlov, H., and Glud, R. N. : Increased CO2 uptake due to sea ice growth and decay in the Nordic Seas, J. Geophys. Res., 114, C09011, doi:10. 1029/2008JC005088, 2009.
Rysgaard, S., Søgaard, D. H., Cooper, M., Pucko, M., Lennert, K., Papakyriakou, T. N., Wang, F., Geilfus, N. X., Glud, R. N., Ehn, J., McGinnis, D. F., Attard, K., Sievers, J., Deming, J. W., and Barber, D. : Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics, The Cryosphere, 7, 707-718, doi:10. 5194/tc-7-707-2013, 2013.
Rysgaard, S., Wang, F., Galley, R. J., Grimm, R., Notz, D., Lemes, M., Geilfus, N.-X., Chaulk, A., Hare, A. A., Crabeck, O., Else, B. G. T., Campbell, K., Sørensen, L. L., Sievers, J., and Papakyriakou, T. : Temporal dynamics of ikaite in experimental sea ice, The Cryosphere, 8, 1469-1478, doi:10. 5194/tc-8-1469-2014, 2014.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T. H., Kozyr, A., Ono, T., and Rios, A. F. : The oceanic sink for anthropogenic CO2, Science, 305, 367-371, 2004.
Sejr, M. K., Krause-Jensen, D., Rysgaard, S., Sorensen, L. L., Christensen, P. B., and Glud, R. N. : Air-sea flux of CO2 in arctic coastal waters influenced by glacial melt water and sea ice, Tellus B, 63, 815-822, 2011.
Semiletov, I. P., Makshtas, A., Akasofu, S. I., and Andreas, E. L. : Atmospheric CO2 balance: The role of Arctic sea ice, Geophys. Res. Lett., 31, L05121, doi:10. 1029/2003GL017996, 2004.
Søgaard, D. H., Thomas, D. N, Rysgaard, S., Norman, L., Kaartokallio, H., Juul-Pedersen T., Glud, R. N., and Geilfus, N. X. : The relative contributions of biological and abiotic processes to the carbon dynamics in subarctic sea ice, Polar Biol., 36, 1761-1777, doi:10. 1007/s00300-013-1396-3, 2013.
Yamamoto, A., Kawamiya, M., Ishida, A., Yamanaka, Y., and Watanabe, S. : Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification, Biogeosciences, 9, 2365-2375, doi:10. 5194/bg-9-2365-2012, 2012.
Yamamoto-Kawai, M., McLaughlin, F. A., Carmack, E. C., Nishino, S., and Shimada, K. : Freshwater budget of the Canada Basin, Arctic Ocean, from salinity,-18O, and nutrients, J. Geophys. Res.-Oceans, 113, C01007, doi:10. 1029/2006JC003858, 2008.
Yamamoto-Kawai, M., McLaughlin, F. A., Carmack, E. C., Nishino, S., and Shimada, K. : Aragonite Undersaturation in the Arctic Ocean: Effects of Ocean Acidification and Sea Ice Melt, Science, 326, 1098-1100, 2009.
Zeebe, R. E. andWolf-Gladrow, D. : CO2 in Seawater: Equilibrium, Kinetics, Isotopes, Elsevier, Amsterdam, 2001.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.