techniques: spectroscopic; planets and satellites: atmospheres; stars: individual: WASP-49; planets and satellites: gaseous planets
Abstract :
[en] Context. Transmission spectroscopy has proven to be a useful tool for the study of exoplanet atmospheres, because the absorption and scattering signatures of the atmosphere manifest themselves as variations in the planetary transit depth. Several planets have been studied with this technique, leading to the detection of a small number of elements and molecules (Na, K, H[SUB]2[/SUB]O), but also revealing that many planets show flat transmission spectra consistent with the presence of opaque high-altitude clouds. <BR /> Aims: We apply this technique to the M[SUB]P[/SUB] = 0.40M[SUB]J[/SUB], R[SUB]p[/SUB] = 1.20R[SUB]J[/SUB], P = 2.78 d planet WASP-49b, aiming to characterize its transmission spectrum between 0.73 and 1 ¯m and search for the features of K and H[SUB]2[/SUB]O. Owing to its density and temperature, the planet is predicted to possess an extended atmosphere and is thus a good target for transmission spectroscopy. <BR /> Methods: Three transits of WASP-49b have been observed with the FORS2 instrument installed at the VLT/UT1 telescope at the ESO Paranal site. We used FORS2 in MXU mode with grism GRIS_600z, producing simultaneous multiwavelength transit light curves throughout the i' and z' bands. We combined these data with independent broadband photometry from the Euler and TRAPPIST telescopes to obtain a good measurement of the transit shape. Strong correlated noise structures are present in the FORS2 light curves, which are due to rotating flat-field structures that are introduced by inhomogeneities of the linear atmospheric dispersion corrector's transparency. We accounted for these structures by constructing common noise models from the residuals of light curves bearing the same noise structures and used them together with simple parametric models to infer the transmission spectrum. <BR /> Results: We present three independent transmission spectra of WASP-49b between 0.73 and 1.02 ¯m, as well as a transmission spectrum between 0.65 and 1.02 ¯m from the combined analysis of FORS2 and broadband data. The results obtained from the three individual epochs agree well. The transmission spectrum of WASP-49b is best fit by atmospheric models containing a cloud deck at pressure levels of 1 mbar or lower. Based on photometric observations made with FORS2 on the ESO VLT/UT1 (Prog. ID 090.C-0758), EulerCam on the Euler-Swiss telescope and the Belgian TRAPPIST telescope.The photometric time series data in this work are only available in electronic form at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A67">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A67</A>
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Lendl, M.; Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042, Graz, Austria ; Université de Liège, Allée du 6 août 17, Sart Tilman, 4000, Liège 1, Belgium ; Observatoire de Genève, Université de Genève, Chemin des maillettes 51, 1290, Sauverny, Switzerland
Delrez, Laetitia ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa)
Gillon, Michaël ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa)
Madhusudhan, N.; University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
Jehin, Emmanuel ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa)
Queloz, D.; Observatoire de Genève, Université de Genève, Chemin des maillettes 51, 1290, Sauverny, Switzerland ; Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 0HE, UK
Anderson, D. R.; Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK
Appenzeller, I., Fricke, K., Fürtig, W. et al., 1998, The Messenger, 94, 1
Barman, T. 2007, ApJ, 661, L191
Bean, J. L., Miller Ricci Kempton, E., & Homeier, D. 2010, Nature, 468, 669
Bean, J. L., Désert, J.-M., Kabath, P. et al., 2011, ApJ, 743, 92
Bean, J. L., Désert, J.-M., Seifahrt, A. et al., 2013, ApJ, 771, 108
Charbonneau, D., Brown, T. M., Noyes, R. W., & Gilliland, R. L. 2002, ApJ, 568, 377
Claret, A., & Bloemen, S. 2011, A&A, 529, A75
Crouzet, N., McCullough, P. R., Burke, C., & Long, D. 2012, ApJ, 761, 7
Deming, D., Wilkins, A., McCullough, P. et al., 2013, ApJ, 774, 95
Désert, J.-M., Vidal-Madjar, A., Lecavelier Des Etangs, A. et al., 2008, A&A, 492, 585
Enoch, B., Collier Cameron, A., Parley, N. R., & Hebb, L. 2010, A&A, 516, A33
Gelman, A., & Rubin, D. 1992, Statist. Sci., 7, 457
Gibson, N. P., Pont, F., & Aigrain, S. 2011, MNRAS, 411, 2199
Gibson, N. P., Aigrain, S., Barstow, J. K. et al., 2013, MNRAS, 428, 3680
Gillon, M., Doyle, A. P., Lendl, M. et al., 2011 a, A&A, 533, A88
Gillon, M., Jehin, E., Magain, P., et al. 2011b, Detection and Dynamics of Transiting Exoplanets, St. Michel l'Observatoire, France, eds. F. Bouchy, R. Diáz, & C. Moutou, EPJ Web Conf., 11, 6002
Gillon, M., Lanotte, A. A., Barman, T. et al., 2010, A&A, 511, A3
Gillon, M., Triaud, A. H. M. J., Fortney, J. J. et al., 2012, A&A, 542, A4
Holman, M. J., Winn, J. N., Latham, D. W. et al., 2006, ApJ, 652, 1715
Huitson, C. M., Sing, D. K., Pont, F. et al., 2013, MNRAS, 434, 3252
Jehin, E., Gillon, M., Queloz, D. et al., 2011, The Messenger, 145, 2
Knutson, H. A., Charbonneau, D., Noyes, R. W., Brown, T. M., & Gilliland, R. L. 2007, ApJ, 655, 564
Lecavelier Des Etangs, A., Pont, F., Vidal-Madjar, A., & Sing, D. 2008, A&A, 481, L83
Lendl, M., Anderson, D. R., Collier Cameron, A. et al., 2012, A&A, 544, A72
Madhusudhan, N. 2012, ApJ, 758, 36
Madhusudhan, N., & Seager, S. 2009, ApJ, 707, 24
Madhusudhan, N., Harrington, J., Stevenson, K. B. et al., 2011, Nature, 469, 64
Mandel, K., & Agol, E. 2002, ApJ, 580, L171
Markwardt, C. B. 2009, in Astronomical Data Analysis Software and Systems XVIII, eds. D. A. Bohlender, D. Durand, & P. Dowler, ASP Conf. Ser., 411, 251
McCullough, P. R., Crouzet, N., Deming, D., & Madhusudhan, N. 2014, ApJ, 791, 55
Moehler, S., Freudling, W., Møller, P. et al., 2010, PASP, 122, 93
Moffat, A. F. J. 1969, A&A, 3, 455
Pollacco, D. L., Skillen, I., Collier Cameron, A. et al., 2006, PASP, 118, 1407
Pont, F., Tamuz, O., Udalski, A. et al., 2008, A&A, 487, 749
Redfield, S., Endl, M., Cochran, W. D., & Koesterke, L. 2008, ApJ, 673, L87
Seager, S., & Sasselov, D. D. 2000, ApJ, 537, 916
Seager, S., Richardson, L. J., Hansen, B. M. S. et al., 2005, ApJ, 632, 1122
Sedaghati, E., Boffin, H. M. J., Csizmadia, S. et al., 2015, A&A, 576, L11
Sing, D. K., Désert, J.-M., Lecavelier Des Etangs, A. et al., 2009, A&A, 505, 891
Sing, D. K., Désert, J.-M., Fortney, J. J. et al., 2011, A&A, 527, A73
Stevenson, K. B., Bean, J. L., Seifahrt, A. et al., 2014, AJ, 147, 161
Swain, M. R., Vasisht, G., & Tinetti, G. 2008, Nature, 452, 329
Wheatley, P. J., Pollacco, D. L., Queloz, D. et al., 2013, EPJ Web Conf., 47, 13002
Winn, J. N. 2011, in Exoplanet Transits and Occultations, ed. S. Seager (The University of Arizona Press), 55
Winn, J. N., Holman, M. J., Torres, G. et al., 2008, ApJ, 683, 176