Alice, A.F., Perez-Martinez, G., and Sanchez-Rivas, C. (2003) Phosphoenolpyruvate phosphotransferase system and N-acetylglucosamine metabolism in Bacillus sphaericus. Microbiology 149: 1687–1698.
Allenby, N.E., Laing, E., Bucca, G., Kierzek, A.M., and Smith, C.P. (2012) Diverse control of metabolism and other cellular processes in Streptomyces coelicolor by the PhoP transcription factor: genome-wide identification of in vivo targets. Nucleic Acids Res 40: 9543–9556.
Angell, S., Schwarz, E., and Bibb, M.J. (1992) The glucose kinase gene of Streptomyces coelicolor A3(2): its nucleotide sequence, transcriptional analysis and role in glucose repression. Mol Microbiol 6: 2833–2844.
Angell, S., Lewis, C.G., Buttner, M.J., and Bibb, M.J. (1994) Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol Gen Genet 244: 135–143.
Barka, E.A., Vatsa, P., Sanchez, L., Gavaut-Vaillant, N., Jacquard, C., Klenk, H.P., et al. (2016) Taxonomy, physiology, and natural products of the Actinobacteria. Microbiol Mol Biol Rev 80: 1–43.
Bates, C.J., and Pasternak, C.A. (1965) Further studies on the regulation of amino sugar metabolism in Bacillus subtilis. Biochem J 96: 147–154.
Bentley, S.D., Chater, K.F., Cerdeno-Tarraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., et al. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141–147.
Bertram, R., Schlicht, M., Mahr, K., Nothaft, H., Saier, M.H., and Titgemeyer, F. (2004) In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3 (2). J Bacteriol 186: 1362–1373.
Bertram, R., Rigali, S., Wood, N., Lulko, A.T., Kuipers, O.P., and Titgemeyer, F. (2011) Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis. J Bacteriol 193: 3525–3536.
Bhatnagar, R.K., Doull, J.L., and Vining, L.C. (1988) Role of the carbon source in regulating chloramphenicol production by Streptomyces venezuelae: studies in batch and continuous cultures. Can J Microbiol 34: 1217–1223.
Bibb, M.J. (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8: 208–215.
Borodina, I., Siebring, J., Zhang, J., Smith, C.P., van Keulen, G., Dijkhuizen, L., and Nielsen, J. (2008) Antibiotic overproduction in Streptomyces coelicolor A3 (2) mediated by phosphofructokinase deletion. J Biol Chem 283: 25186–25199.
Boulanger, A., Dejean, G., Lautier, M., Glories, M., Zischek, C., Arlat, M., and Lauber, E. (2010) Identification and regulation of the N-acetylglucosamine utilization pathway of the plant pathogenic bacterium Xanthomonas campestris pv. campestris. J Bacteriol 192: 1487–1497.
Bouma, C.L., and Roseman, S. (1996) Sugar transport by the marine chitinolytic bacterium Vibrio furnissii. Molecular cloning and analysis of the mannose/glucose permease. J Biol Chem 271: 33468–33475.
Brückner, R., and Titgemeyer, F. (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209: 141–148.
Butler, M.J., Deutscher, J., Postma, P.W., Wilson, T.J., Galinier, A., and Bibb, M.J. (1999) Analysis of a ptsH homologue from Streptomyces coelicolor A3(2). FEMS Microbiol Lett 177: 279–288.
Chouayekh, H., and Virolle, M.J. (2002) The polyphosphate kinase plays a negative role in the control of antibiotic production in Streptomyces lividans. Mol Microbiol 43: 919–930.
Claessen, D., Rozen, D.E., Kuipers, O.P., Sogaard-Andersen, L., and van Wezel, G.P. (2014) Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Rev Microbiol 12: 115–124.
Colson, S., van Wezel, G.P., Craig, M., Noens, E.E., Nothaft, H., Mommaas, A.M., et al. (2008) The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor. Microbiology 154: 373–382.
Cooper, M.A., and Shlaes, D. (2011) Fix the antibiotics pipeline. Nature 472: 32.
Cortes, J., Liras, P., Castro, J.M., and Martin, J.F. (1986) Glucose regulation of cephamycin biosynthesis in Streptomyces lactamdurans is exerted on the formation of alpha-aminoadipyl-cysteinyl-valine and deacetoxycephalosporin C synthase. J Gen Microbiol 132: 1805–1814.
Craig, M., Lambert, S., Jourdan, S., Tenconi, E., Colson, S., Maciejewska, M., et al. (2012) Unsuspected control of siderophore production by N-acetylglucosamine in streptomycetes. Environ Microbiol Rep 4: 512–521.
Cruz-Morales, P., Vijgenboom, E., Iruegas-Bocardo, F., Girard, G., Yanez-Guerra, L.A., Ramos-Aboites, H.E., et al. (2013) The genome sequence of Streptomyces lividans 66 reveals a novel tRNA-dependent peptide biosynthetic system within a metal-related genomic island. Genome Biol Evol 5: 1165–1175.
Demain, A.L., and Inamine, E. (1970) Biochemistry and regulation of streptomycin and mannosidostreptomycinase (alpha-D-mannosidase) formation. Bacteriol Rev 34: 1–19.
Derouaux, A., Dehareng, D., Lecocq, E., Halici, S., Nothaft, H., Giannotta, F., et al. (2004a) Crp of Streptomyces coelicolor is the third transcription factor of the large CRP-FNR superfamily able to bind cAMP. Biochem Biophys Res Commun 325: 983–990.
Derouaux, A., Halici, S., Nothaft, H., Neutelings, T., Moutzourelis, G., Dusart, J., et al. (2004b) Deletion of a cyclic AMP receptor protein homologue diminishes germination and affects morphological development of Streptomyces coelicolor. J Bacteriol 186: 1893–1897.
Deutscher, J., Kuster, E., Bergstedt, U., Charrier, V., and Hillen, W. (1995) Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol 15: 1049–1053.
Dubeau, M.P., Poulin-Laprade, D., Ghinet, M.G., and Brzezinski, R. (2011) Properties of CsnR, the transcriptional repressor of the chitosanase gene, csnA, of Streptomyces lividans. J Bacteriol 193: 2441–2450.
Durand, P., Golinelli-Pimpaneau, B., Mouilleron, S., Badet, B., and Badet-Denisot, M.A. (2008) Highlights of glucosamine-6P synthase catalysis. Arch Biochem Biophys 474: 302–317.
Eisenbeis, S., Lohmiller, S., Valdebenito, M., Leicht, S., and Braun, V. (2008) NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus. J Bacteriol 190: 5230–5238.
Elliot, M.A., Buttner, M.J., and Nodwell, J.R. (2008) Multicellular development in Streptomyces. In Myxobacteria: Multicellularity and Differentiation. Whitworth, D.E. (ed). Washington, DC: ASM Press, pp. 419–438.
Escalante, L., Lopez, H., del Carmen Mateos, R., Lara, F., and Sanchez, S. (1982) Transient repression of erythromycin formation in Streptomyces erythraeus. J Gen Microbiol 128: 2011–2015.
Fillenberg, S.B., Grau, F.C., Seidel, G., and Muller, Y.A. (2015) Structural insight into operator dre-sites recognition and effector binding in the GntR/HutC transcription regulator NagR. Nucleic Acids Res 43: 1283–1296.
Fillenberg, S.B., Friess, M.D., Korner, S., Bockmann, R.A., and Muller, Y.A. (2016) Crystal structures of the global regulator DasR from Streptomyces coelicolor: implications for the allosteric regulation of GntR/HutC repressors. PLoS One 11: e0157691.
Fink, D., Weissschuh, N., Reuther, J., Wohlleben, W., and Engels, A. (2002) Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3. Mol Microbiol 46: 331–347.
Flärdh, K., and Buttner, M.J. (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7: 36–49.
Francis, I.M., Jourdan, S., Fanara, S., Loria, R., and Rigali, S. (2015) The cellobiose sensor CebR is the gatekeeper of Streptomyces scabies pathogenicity. MBio 6: e02018.
Gao, C., Hindra, Mulder, D., Yin, C., and Elliot, M.A. (2012) Crp is a global regulator of antibiotic production in Streptomyces. MBio 3: 00407–00412.
Gaugué, I., Oberto, J., Putzer, H., and Plumbridge, J. (2013) The use of amino sugars by Bacillus subtilis: presence of a unique operon for the catabolism of glucosamine PLoS One 8: e63025.
Ghorbel, S., Kormanec, J., Artus, A., and Virolle, M.J. (2006a) Transcriptional studies and regulatory interactions between the phoR-phoP operon and the phoU, mtpA, and ppk genes of Streptomyces lividans TK24. J Bacteriol 188: 677–686.
Ghorbel, S., Smirnov, A., Chouayekh, H., Sperandio, B., Esnault, C., Kormanec, J., and Virolle, M.J. (2006b) Regulation of ppk expression and in vivo function of Ppk in Streptomyces lividans TK24. J Bacteriol 188: 6269–6276.
Gomez-Escribano, J.P., Song, L., Fox, D.J., Yeo, V., Bibb, M.J., and Challis, G.L. (2012) Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem Sci 3: 2716–2720.
Gorke, B., and Stülke, J. (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6: 613–624.
Gubbens, J., Janus, M., Florea, B.I., Overkleeft, H.S., and van Wezel, G.P. (2012) Identification of glucose kinase dependent and independent pathways for carbon control of primary metabolism, development and antibiotic production in Streptomyces coelicolor by quantitative proteomics. Mol Microbiol 86: 1490–1507.
Gunnewijk, M.G., van den Bogaard, P.T., Veenhoff, L.M., Heuberger, E.H., de Vos, W.M., Kleerebezem, M., et al. (2001) Hierarchical control versus autoregulation of carbohydrate utilization in bacteria. J Mol Microbiol Biotechnol 3: 401–413.
Guzman, S., Carmona, A., Escalante, L., Imriskova, I., Lopez, R., Rodriguez-Sanoja, R., et al. (2005) Pleiotropic effect of the SCO2127 gene on the glucose uptake, glucose kinase activity and carbon catabolite repression in Streptomyces peucetius var. caesius. Microbiology 151: 1717–1723.
Hindle, Z., and Smith, C.P. (1994) Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol 12: 737–745.
Hodgson, D.A. (2000) Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42: 47–238.
Hogema, B.M., Arents, J.C., Bader, R., Eijkemans, K., Yoshida, H., Takahashi, H., et al. (1998) Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc. Mol Microbiol 30: 487–498.
Hong, B., Phornphisutthimas, S., Tilley, E., Baumberg, S., and McDowall, K.J. (2007) Streptomycin production by Streptomyces griseus can be modulated by a mechanism not associated with change in the adpA component of the a-factor cascade. Biotechnol Lett 29: 57–64.
Hopwood, D.A. (2006) Soil to genomics: the Streptomyces chromosome. Annu Rev Genet 40: 1–23.
Hopwood, D.A. (2007) Streptomyces in Nature and Medicine: The Antibiotic Makers. New York: Oxford University Press.
Hostalek, Z. (1980) Catabolite regulation of antibiotic biosynthesis. Folia Microbiol (Praha) 25: 445–450.
Ikeda, H., Ishikawa, J., Hanamoto, A., Shinose, M., Kikuchi, H., Shiba, T., et al. (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21: 526–531.
Jakimowicz, D., and van Wezel, G.P. (2012) Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere? Mol Microbiol 85: 393–404.
Jault, J., Fieulaine, S., Nessler, S., Gonzalo, P., Di Pietro, A., Deutscher, J., and Galinier, A. (2000) The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose 1,6-bisphosphate binding. J Biol Chem 275: 1773–1780.
Jones-Mortimer, M.C., and Kornberg, H.L. (1980) Amino-sugar transport systems of Escherichia coli K12. J Gen Microbiol 117: 369–376.
Jones, B.E., Dossonnet, V., Kuster, E., Hillen, W., Deutscher, J., and Klevit, R.E. (1997) Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J Biol Chem 272: 26530–26535.
Kamionka, A., Parche, S., Nothaft, H., Siepelmeyer, J., Jahreis, K., and Titgemeyer, F. (2002) The phosphotransferase system of Streptomyces coelicolor. Eur J Biochem 269: 2143–2150.
Kim, E.S., Hong, H.J., Choi, C.Y., and Cohen, S.N. (2001) Modulation of actinorhodin biosynthesis in Streptomyces lividans by glucose repression of afsR2 gene transcription. J Bacteriol 183: 2198–2203.
Kim, S.H., Traag, B.A., Hasan, A.H., McDowall, K.J., Kim, B.G., and van Wezel, G.P. (2015) Transcriptional analysis of the cell division-related ssg genes in Streptomyces coelicolor reveals direct control of ssgR by AtrA. Antonie Van Leeuwenhoek 108: 201–213.
Kolter, R., and van Wezel, G.P. (2016) Goodbye to brute force in antibiotic discovery? Nat Microbiol 1: 15020.
Komatsuzawa, H., Fujiwara, T., Nishi, H., Yamada, S., Ohara, M., McCallum, N., et al. (2004) The gate controlling cell wall synthesis in Staphylococcus aureus. Mol Microbiol 53: 1221–1231.
Labeda, D.P., Goodfellow, M., Brown, R., Ward, A.C., Lanoot, B., Vanncanneyt, M., et al. (2012) Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek 101: 73–104.
Lambert, S., Traxler, M.F., Craig, M., Maciejewska, M., Ongena, M., van Wezel, G.P., et al. (2014) Altered desferrioxamine-mediated iron utilization is a common trait of bald mutants of Streptomyces coelicolor. Metallomics 6: 1390–1399.
Le Marechal, P., Decottignies, P., Marchand, C.H., Degrouard, J., Jaillard, D., Dulermo, T., et al. (2013) Comparative proteomic analysis of Streptomyces lividans Wild-Type and ppk mutant strains reveals the importance of storage lipids for antibiotic biosynthesis. Appl Environ Microbiol 79: 5907–5917.
Lee, H., Im, J., Lee, M., Lee, S., and Es, K. (2009) A putative secreted solute binding protein, SCO6569 is a possible AfsR2-dependent down-regulator of actinorhodin biosynthesis in Streptomyces coelicolor. Process Biochem 44: 373–377.
Lee, P.C., Umeyama, T., and Horinouchi, S. (2002) afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3 (2). Mol Microbiol 43: 1413–1430.
Lewis, K. (2013) Platforms for antibiotic discovery. Nat Rev Drug Discov 12: 371–387.
Lewis, R.A., Shahi, S.K., Laing, E., Bucca, G., Efthimiou, G., Bushell, M., and Smith, C.P. (2011) Genome-wide transcriptomic analysis of the response to nitrogen limitation in Streptomyces coelicolor A3 (2). BMC Res Notes 4: 78.
Liao, C.H., Yao, L.L., and Ye, B.C. (2014a) Three genes encoding citrate synthases in Saccharopolyspora erythraea are regulated by the global nutrient-sensing regulators GlnR, DasR, and CRP. Mol Microbiol 94: 1065–1084.
Liao, C., Rigali, S., Cassani, C.L., Marcellin, E., Nielsen, L.K., and Ye, B.C. (2014b) Control of chitin and N-acetylglucosamine utilization in Saccharopolyspora erythraea. Microbiology 160: 1914–1928.
Liao, C.H., Yao, L., Xu, Y., Liu, W.B., Zhou, Y., and Ye, B.C. (2015a) Nitrogen regulator GlnR controls uptake and utilization of non-phosphotransferase-system carbon sources in actinomycetes. PNAS 112(51): 15630–15635.
Liao, C.H., Xu, Y., Rigali, S., and Ye, B.C. (2015b) DasR is a pleiotropic regulator required for antibiotic production, pigment biosynthesis, and morphological development in Saccharopolyspora erythraea. Appl Microbiol Biotechnol 99: 10215–10224.
Ludwig, W., Euzeby, J., Schumann, P., Busse, H.J., Trujillo, M.E., Kämpfer, P., and Whitman, W.B. (2012) Road map of the phylum Actinobacteria. In Bergey's Manual of Systematic Bacteriology. Vol. 5. Goodfellow, M., Kämpfer, P., Busse, H.-J., Trujillo, M.E., Suzuki, K.-I., Ludwig, W., and Whitman, W.B. (eds). New York: Springer, pp. 1–28.
McCormick, J.R., and Flardh, K. (2012) Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 36: 206–231.
Manteca, A., Fernandez, M., and Sanchez, J. (2005) A death round affecting a young compartmentalized mycelium precedes aerial mycelium dismantling in confluent surface cultures of Streptomyces antibioticus. Microbiology 151: 3689–3697.
Martin, J.F. (2004) Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. J Bacteriol 186: 5197–5201.
Martin, J.F., and Liras, P. (2010) Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 13: 263–273.
Martin, J.F., Sola-Landa, A., Santos-Beneit, F., Fernandez-Martinez, L.T., Prieto, C., and Rodriguez-Garcia, A. (2011) Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces. Microb Biotechnol 4: 165–174.
Martinez, A., Kolvek, S.J., Hopke, J., Yip, C.L., and Osburne, M.S. (2005) Environmental DNA fragment conferring early and increased sporulation and antibiotic production in Streptomyces species. Appl Environ Microbiol 71: 1638–1641.
Midelfort, C.F., and Rose, I.A. (1977) Studies on the mechanism of Escherichia coli glucosamine-6-phosphate isomerase. Biochemistry 16: 1590–1596.
Miguelez, E.M., Hardisson, C., and Manzanal, M.B. (1999) Hyphal death during colony development in Streptomyces antibioticus: morphological evidence for the existence of a process of cell deletion in a multicellular prokaryote. J Cell Biol 145: 515–525.
Miguelez, E.M., Hardisson, C., and Manzanal, M.B. (2000) Streptomycetes: a new model to study cell death. Int Microbiol 3: 153–158.
Mijakovic, I., Poncet, S., Galinier, A., Monedero, V., Fieulaine, S., Janin, J., et al. (2002) Pyrophosphate-producing protein dephosphorylation by HPr kinase/phosphorylase: a relic of early life? Proc Natl Acad Sci U S A 99: 13442–13447.
Nazari, B., Kobayashi, M., Saito, A., Hassaninasab, A., Miyashita, K., and Fujii, T. (2012) Chitin-induced gene expression involved in secondary metabolic pathways in Streptomyces coelicolor A3(2) grown in soil. Appl Environ Microbiol 79: 707–713.
Nieselt, K., Battke, F., Herbig, A., Bruheim, P., Wentzel, A., Jakobsen, O.M., et al. (2010) The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics 11: 10.
Nothaft, H., Dresel, D., Willimek, A., Mahr, K., Niederweis, M., and Titgemeyer, F. (2003a) The phosphotransferase system of Streptomyces coelicolor is biased for N-acetylglucosamine metabolism. J Bacteriol 185: 7019–7023.
Nothaft, H., Parche, S., Kamionka, A., and Titgemeyer, F. (2003b) In vivo analysis of HPr reveals a fructose-specific phosphotransferase system that confers high-affinity uptake in Streptomyces coelicolor. J Bacteriol 185: 929–937.
Nothaft, H., Rigali, S., Boomsma, B., Swiatek, M., McDowall, K.J., van Wezel, G.P., and Titgemeyer, F. (2010) The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control. Mol Microbiol 75: 1133–1144.
Ohnishi, Y., Ishikawa, J., Hara, H., Suzuki, H., Ikenoya, M., Ikeda, H., et al. (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190: 4050–4060.
Park, S.S., Yang, Y.H., Song, E., Kim, E.J., Kim, W.S., Sohng, J.K., et al. (2009) Mass spectrometric screening of transcriptional regulators involved in antibiotic biosynthesis in Streptomyces coelicolor A3(2). J Ind Microbiol Biotechnol 36: 1073–1083.
Payne, D.J., Gwynn, M.N., Holmes, D.J., and Pompliano, D.L. (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6: 29–40.
Perez-Redondo, R., Santamarta, I., Bovenberg, R., Martin, J.F., and Liras, P. (2010) The enigmatic lack of glucose utilization in Streptomyces clavuligerus is due to inefficient expression of the glucose permease gene. Microbiology 156: 1527–1537.
Piette, A., Derouaux, A., Gerkens, P., Noens, E.E., Mazzucchelli, G., Vion, S., et al. (2005) From dormant to germinating spores of Streptomyces coelicolor A3(2): new perspectives from the crp null mutant. J Proteome Res 4: 1699–1708.
Plumbridge, J. (2015) Regulation of the utilization of amino sugars by Escherichia coli and Bacillus subtilis: same genes, different control. J Ind Microbiol Biotechnol 25: 154–167.
Postma, P.W., Lengeler, J.W., and Jacobson, G.R. (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57: 543–594.
Postma, P.W., Lengeler, J.W., and Jacobson, G.R. (1996) Phosphoenolpyruvate:carbohydrate phosphotransferase systems. In Escherichia coli and Salmonella, Cellular and Molecular Biology. Neidhardt, F.C., Curtiss, R., Ingraham, J.I., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M., and Umbargo, H.E. (eds). Washington, DC: ASM, pp. 1149–1174.
Reizer, J., Bachem, S., Reizer, A., Arnaud, M., Saier, M.H., Jr., and Stulke, J. (1999) Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. Microbiology 145: 3419–3429.
Reuther, J., and Wohlleben, W. (2007) Nitrogen metabolism in Streptomyces coelicolor: transcriptional and post-translational regulation. J Ind Microbiol Biotechnol 12: 139–146.
Rigali, S., Nothaft, H., Noens, E.E., Schlicht, M., Colson, S., Muller, M., et al. (2006) The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol 61: 1237–1251.
Rigali, S., Titgemeyer, F., Barends, S., Mulder, S., Thomae, A.W., Hopwood, D.A., and van Wezel, G.P. (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9: 670–675.
Rodríguez-García, A., Barreiro, C., Santos Beneit, F., Sola Landa, A., and Martín, J.F. (2007) Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a ΔphoP mutant. Proteomics 7: 2410–2429.
Romero, A., Ruiz, B., Sohng, J.K., Koirala, N., Rodriguez-Sanoja, R., and Sanchez, S. (2015) Functional analysis of the GlcP promoter in Streptomyces peucetius var. caesius. Appl Biochem Biotechnol 175: 3207–3217.
Romero-Rodríguez, A., Rocha, D., Ruiz-Villafan, B., Tierrafría, V., Rodríguez-Sanoja, R., Segura-González, D., and Sánchez, S. (2016) Transcriptomic analysis of a classical model of carbon catabolite regulation in Streptomyces coelicolor. BMC Microbiol 16: 1.
Rutledge, P.J., and Challis, G.L. (2015) Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 13: 509–523.
Saier, M.H., Jr., and Reizer, J. (1992) Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Bacteriol 174: 1433–1438.
Saito, A., Ishizaka, M., Francisco, P.B., Jr., Fujii, T., and Miyashita, K. (2000) Transcriptional co-regulation of five chitinase genes scattered on the Streptomyces coelicolor A3(2) chromosome. Microbiology 146: 2937–2946.
Saito, A., and Schrempf, H. (2004) Mutational analysis of the binding affinity and transport activity for N-acetylglucosamine of the novel ABC transporter Ngc in the chitin-degrader Streptomyces olivaceoviridis. Mol Gen Genet 271: 545–553.
Saito, A., Shinya, T., Miyamoto, K., Yokoyama, T., Kaku, H., Minami, E., et al. (2007) The dasABC gene cluster, adjacent to dasR, encodes a novel ABC transporter for the uptake of N, N′-diacetylchitobiose in Streptomyces coelicolor A3 (2). Appl Env Microbiol 73: 3000–3008.
Saito, A., Fujii, T., Shinya, T., Shibuya, N., Ando, A., and Miyashita, K. (2008) The msiK gene, encoding the ATP-hydrolysing component of N,N′-diacetylchitobiose ABC transporters, is essential for induction of chitinase production in Streptomyces coelicolor A3(2). Microbiology 154: 3358–3365.
Saito, A., Ebise, H., Orihara, Y., Murakami, S., Sano, Y., Kimura, A., et al. (2013) Enzymatic and genetic characterization of the DasD protein possessing N-acetyl-beta-d-glucosaminidase activity in Streptomyces coelicolor A3(2). FEMS Microbiol Lett 340: 33–40.
Sanchez, S., Chavez, A., Forero, A., Garcia-Huante, Y., Romero, A., Sanchez, M., et al. (2010) Carbon source regulation of antibiotic production. J Antibiot (Tokyo) 63: 442–459.
Santos-Beneit, F., Rodríguez-García, A., Sola-Landa, A., and Martín, J.F. (2009) Cross-talk between two global regulators in Streptomyces: PhoP and AfsR interact in the control of afsS, pstS and phoRP transcription. Mol Microbiol 72: 53–68.
Santos-Beneit, F., Rodriguez-Garcia, A., and Martin, J.F. (2011) Complex transcriptional control of the antibiotic regulator afsS in Streptomyces: PhoP and AfsR are overlapping, competitive activators. J Bacteriol 193: 2242–2251.
Santos-Beneit, F., Rodríguez-García, A., and Martín, J.F. (2012) Overlapping binding of PhoP and AfsR to the promoter region of glnR in Streptomyces coelicolor. Microbiol Res 167: 532–535.
Seo, J.W., Ohnishi, Y., Hirata, A., and Horinouchi, S. (2002) ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus. J Bacteriol 184: 91–103.
Sola-Landa, A., Rodríguez-García, A., Amin, R., Wohlleben, W., and Martín, J.F. (2013) Competition between the GlnR and PhoP regulators for the glnA and amtB promoters in Streptomyces coelicolor. Nucleic Acids Res 41: 1767–1782.
Swiatek, M.A., Tenconi, E., Rigali, S., and van Wezel, G.P. (2012a) Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. J Bacteriol 194: 1136–1144.
Swiatek, M.A., Urem, M., Tenconi, E., Rigali, S., and van Wezel, G.P. (2012b) Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism. Bioengineered 3: 280–285.
Swiatek, M.A., Gubbens, J., Bucca, G., Song, E., Yang, Y.H., Laing, E., et al. (2013) The ROK family regulator Rok7B7 pleiotropically affects xylose utilization, carbon catabolite repression, and antibiotic production in Streptomyces coelicolor. J Bacteriol 195: 1236–1248.
Swiatek-Polatynska, M.A., Bucca, G., Laing, E., Gubbens, J., Titgemeyer, F., Smith, C.P., et al. (2015) Genome-wide analysis of in vivo binding of the master regulator DasR in Streptomyces coelicolor identifies novel non-anonical targets. PLoS One 10: e0122479.
Tenconi, E., Jourdan, S., Motte, P., Virolle, M.J., and Rigali, S. (2012) Extracellular sugar phosphates are assimilated by Streptomyces in a PhoP-dependent manner. Antonie Van Leeuwenhoek 102: 425–433.
Tenconi, E., Urem, M., Swiatek-Polatynska, M.A., Titgemeyer, F., Muller, Y.A., van Wezel, G.P., and Rigali, S. (2015) Multiple allosteric effectors control the affinity of DasR for its target sites. Biochem Biophys Res Commun 464: 324–329.
Terrak, M., Ghosh, T.K., van Heijenoort, J., Van Beeumen, J., Lampilas, M., Aszodi, J., et al. (1999) The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan-polymerizing penicillin-binding protein 1b of Escherichia coli. Mol Microbiol 34: 350–364.
Tiffert, Y., Supra, P., Wurm, R., Wohlleben, W., Wagner, R., and Reuther, J. (2008) The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol Microbiol 67: 861–880.
Titgemeyer, F., Reizer, J., Reizer, A., and Saier, M.H., Jr. (1994) Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. Microbiology 140: 2349–2354.
Titgemeyer, F., Walkenhorst, J., Reizer, J., Stuiver, M.H., Cui, X., and Saier, M.H., Jr. (1995) Identification and characterization of phosphoenolpyruvate:fructose phosphotransferase systems in three Streptomyces species. Microbiology 141: 51–58.
Traag, B.A., and van Wezel, G.P. (2008) The SsgA-like proteins in actinomycetes: small proteins up to a big task. Antonie Van Leeuwenhoek 94: 85–97.
Traxler, M.F., Seyedsayamdost, M.R., Clardy, J., and Kolter, R. (2012) Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol Microbiol 86: 628–644.
Uguru, G.C., Stephens, K.E., Stead, J.A., Towle, J.E., Baumberg, S., and McDowall, K.J. (2005) Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Mol Microbiol 58: 131–150.
van Wezel, G.P., White, J., Young, P., Postma, P.W., and Bibb, M.J. (1997) Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacl-galR family of regulatory genes. Mol Microbiol 23: 537–549.
van Wezel, G.P., White, J., Hoogvliet, G., and Bibb, M.J. (2000) Application of redD, the transcriptional activator gene of the undecylprodigiosin biosynthetic pathway, as a reporter for transcriptional activity in Streptomyces coelicolor A3(2) and Streptomyces lividans. J Mol Microbiol Biotechnol 2: 551–556.
van Wezel, G.P., Mahr, K., Konig, M., Traag, B.A., Pimentel-Schmitt, E.F., Willimek, A., and Titgemeyer, F. (2005) GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2). Mol Microbiol 55: 624–636.
van Wezel, G.P., Krabben, P., Traag, B.A., Keijser, B.J., Kerste, R., Vijgenboom, E., et al. (2006a) Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering. Appl Environ Microbiol 72: 5283–5288.
van Wezel, G.P., Titgemeyer, F., and Rigali, S. (2006b) Methods and means for metabolic engineering and improved product formation by micro-organisms. Patent Application WO 2007/094667.
van Wezel, G.P., Konig, M., Mahr, K., Nothaft, H., Thomae, A.W., Bibb, M., and Titgemeyer, F. (2007) A new piece of an old jigsaw: glucose kinase is activated posttranslationally in a glucose transport-dependent manner in Streptomyces coelicolor A3(2). J Mol Microbiol Biotechnol 12: 67–74.
van Wezel, G.P., McKenzie, N.L., and Nodwell, J.R. (2009) Applying the genetics of secondary metabolism in model actinomycetes to the discovery of new antibiotics. Methods Enzymol 458: 117–141.
van Wezel, G.P., and McDowall, K.J. (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28: 1311–1333.
Viens, P., Dubeau, M.P., Kimura, A., Desaki, Y., Shinya, T., Shibuya, N., et al. (2015) Uptake of chitosan-derived D-glucosamine oligosaccharides in Streptomyces coelicolor A3(2). FEMS Microbiol Lett 362: fnv048.
Wang, F., Xiao, X., Saito, A., and Schrempf, H. (2002) Streptomyces olivaceoviridis possesses a phosphotransferase system that mediates specific, phosphoenolpyruvate-dependent uptake of N-acetylglucosamine. Mol Genet Genomics 268: 344–351.
Wang, J., and Zhao, G.P. (2009) GlnR positively regulates nasA transcription in Streptomyces coelicolor. Biochem Biophys Res Commun 386: 77–81.
Wang, R., Mast, Y., Wang, J., Zhang, W., Zhao, G., Wohlleben, W., et al. (2013) Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor. Mol Microbiol 87: 30–48.
Wietzorrek, A., and Bibb, M. (1997) A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25: 1181–1184.
Xiao, X., Wang, F., Saito, A., Majka, J., Schlosser, A., and Schrempf, H. (2002) The novel Streptomyces olivaceoviridis ABC transporter Ngc mediates uptake of N-acetylglucosamine and N,N′-diacetylchitobiose. Mol Genet Genomics 267: 429–439.
Yamanaka, K., Oikawa, H., Ogawa, H.O., Hosono, K., Shinmachi, F., Takano, H., et al. (2005) Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology 151: 2899–2905.
Zhu, H., Sandiford, S.K., and van Wezel, G.P. (2014a) Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol 41: 371–386.
Zhu, H., Swierstra, J., Wu, C., Girard, G., Choi, Y.H., van Wamel, W., et al. (2014b) Eliciting antibiotics active against the ESKAPE pathogens in a collection of actinomycetes isolated from mountain soils. Microbiology 160: 1714–1725.