[en] Fractured – karstified limestone aquifers constitute important, but vulnerable groundwater reservoirs in many areas across the World. Such carbonate systems are highly heterogeneous leading to a high spatial and temporal variability of fluxes across the soil – vadose zone – groundwater – surface water continuum. One of the main challenges worldwide is to protect such groundwater bodies from diffuse pollutions, in particular agricultural chemicals such as nitrate. To face such problems and to propose adequate pollution mitigation scenarios, the objective here was to better understand and quantify nitrate dynamics and pathways in the subsurface and at the groundwater – surface water interface.
The transfer of nitrate was investigated in different ways such as monitoring of concentrations in both groundwater and surface water, tracer experiments in the unsaturated – saturated continuum and regional investigations on groundwater chemistry including stable isotopes of nitrate and other compounds. Results show that nitrate concentrations are relatively stable both in groundwater and surface water during the low flow period (i.e. from spring to autumn). A temporary but significant increase in nitrate concentration is observed in groundwater and rivers during the winter, related to release of residual nitrate from agricultural soils driven by infiltration water. In period of high precipitations and runoff, dilution is measured in the river. Monitoring and tracer test results also highlight the fact that the migration of dissolved contaminants across the unsaturated zone of limestone rocks is very fast and governed by gravitational flows. In the rivers, macroinvertebrates and benthic diatoms were sampled at several sites to assess ecological status and structural and functional response to alteration of water quality (nutrient enrichment) and quantity (current velocity and stream habitats). Diatom indices and community structure indicated good to very good status in both studied streams, indicating that elevated nitrate concentration have no detectable effect on biological quality of the surface waters.
The combination of all these results allows developing a detailed conceptual model of the dynamics of nitrate (and other agricultural contaminants) in fractured / karstified limestone aquifers, with improved estimates of nitrate trends and dynamics in both groundwater and rivers.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Briers, Pierre ; Université de Liège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Schmit, Flore
Orban, Philippe ; Université de Liège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.