Contribution to collective works (Parts of books)
Prediction of non-linear time-variant dynamic crop model using bayesian methods
Mansouri, Majdi; Dumont, Benjamin; Destain, Marie-France
2013In Stafford, John V. (Ed.) Precision agriculture '13
Peer reviewed
 

Files


Full Text
PrecisionAgriculture13_Mansouri_2013_Prediction_nonlinear_timevariant_cropModel.pdf
Publisher postprint (575.25 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
crop mode; variational filter; extended Kalman filter; particle filter; LAI; soil moisture prediction
Abstract :
[en] This work addresses the problem of predicting a non-linear time-variant leaf area index and soil moisture model (LSM) using state estimation. These techniques include the extended Kalman filter(EKF), particle filter (PF) and the more recently developed technique, variational filter (VF). In the comparative study, the state variables (the leaf-area index LAI, the volumetric water content of the layer 1, HUR1 and the volumetric water content of the layer 2, HUR2) are estimated from noisy measurements of these variables, and the various estimation techniques are compared by computing the estimation root mean square error with respect to the noise-free data. The results show that VF provides a significant improvement over EKF and PF.
Disciplines :
Computer science
Agriculture & agronomy
Author, co-author :
Mansouri, Majdi ;  Université de Liège > Ingénierie des biosystèmes (Biose) > Agriculture de précision
Dumont, Benjamin  ;  Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Phytotechnie des régions tempérées
Destain, Marie-France ;  Université de Liège > Ingénierie des biosystèmes (Biose) > Agriculture de précision
Language :
English
Title :
Prediction of non-linear time-variant dynamic crop model using bayesian methods
Publication date :
2013
Main work title :
Precision agriculture '13
Editor :
Stafford, John V.
Publisher :
Wageningen Academic Publishers, Wageningen, Netherlands
ISBN/EAN :
978-90-8686-778-3
Pages :
507-513
Peer reviewed :
Peer reviewed
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 06 August 2016

Statistics


Number of views
50 (3 by ULiège)
Number of downloads
171 (3 by ULiège)

OpenCitations
 
0
OpenAlex citations
 
2

Bibliography


Similar publications



Contact ORBi