Reference : Eulerian Formulation of Elastic Rods
Scientific journals : Article
Engineering, computing & technology : Mechanical engineering
Physical, chemical, mathematical & earth Sciences : Physics
Eulerian Formulation of Elastic Rods
Huynen, Alexandre mailto [Université de Liège > Département ArGEnCo > Analyse sous actions aléatoires en génie civil >]
Detournay, Emmanuel mailto [University of Minnesota > Civil, Environmental and Geo- Engineering > > >]
Denoël, Vincent mailto [Université de Liège > Département ArGEnCo > Analyse sous actions aléatoires en génie civil >]
Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences
Royal Society of London
Yes (verified by ORBi)
United Kingdom
[en] Elastic rod ; Eulerian formulation ; Self-feeding
[en] In numerous biological, medical and engineering applications, elastic rods are constrained to deform inside or around tube-like surfaces. To solve efficiently this class of problems, the equations governing the deflection of elastic rods are reformulated within the Eulerian framework of this generic tubular constraint defined as a perfectly stiff canal surface. This reformulation hinges on describing the rod deformed configuration by means of its relative position with respect to a reference curve, defined as the axis or spine curve of the constraint, and on restating the rod local equilibrium in terms of the curvilinear coordinate parameterizing this curve. Associated with a segmentation strategy, which partitions the global problem into a sequence of rod segments either in continuous contact with the constraint or free of contact (except for their extremities), this approach not only trivializes the detection of new contacts but also suppresses the isoperimetric constraints resulting from the self-feeding feature of these elementary problems and the imposition of the rod position at the extremities of each rod segments.
Fonds pour la formation à la Recherche dans l'Industrie et dans l'Agriculture (Communauté française de Belgique) - FRIA

File(s) associated to this reference

Fulltext file(s):

Open access
RSPA20150547.pdfPublisher postprint711.19 kBView/Open

Additional material(s):

File Commentary Size Access
Restricted access
Supplementary material.nbMathematica file567.07 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.