Propeller aerodynamics; Oblique flow; Micro-air vehicles; Vertical take-off and landing
Abstract :
[en] This paper presents the modelling of the performance of small propellers used for Vertical Take Off and Landing Micro Aerial Vehicles (VTOL MAVs) operating at low Reynolds numbers and in oblique flow. Blade Element Momentum Theory (BEMT), Vortex Lattice Method (VLM) and momentum theory for oblique flow are used to predict propeller performance. For validation, the predictions for a commonly used propeller for VTOL MAVs are compared to a set of wind tunnel experiments. Both BEMT and VLM succeed in predicting correct trends of the forces and moments acting upon the propeller shaft, although accuracy decreases significantly in oblique flow. For the dataset analysed here, combining the available data of the propeller in purely axial flow with momentum theory for oblique flow and applying a correction factor for the wake skew angle results in more accurate performance estimates at all elevation angles.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Theys, Bart; Katholieke Universiteit Leuven - KUL > Department of Mechanical Engineering
Dimitriadis, Grigorios ; Université de Liège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Hendrick, Patrick; Université Libre de Bruxelles - ULB > Aero-Thermo-Mechanics
De Schutter, Joris; Katholieke Universiteit Leuven - KUL > Department of Mechanical Engineering
Language :
English
Title :
Experimental and Numerical Study of Mini-UAV Propeller Performance in Oblique Flow
Publication date :
May 2017
Journal title :
Journal of Aircraft
ISSN :
0021-8669
eISSN :
1533-3868
Publisher :
American Institute of Aeronautics & Astronautics (AIAA), Reston, United States - Virginia
Bouabdallah, S., Murrieri, P., and Siegwart, R., "Design and Control of an Indoor Micro Quadrotor, " Proceedings of the International Conference on Robotics and Automation (ICRA'04), Vol. 5, IEEE, New York, 2004.
Tayebi, A., and McGilvray, S., "Attitude Stabilization of a VTOL Quadrotor Aircraft, " IEEE Transactions on Control Systems Technology, Vol. 14, No. 3, 2006, pp. 562-571.
Gur, O., and Rosen, A., "Optimization of Propeller Based Propulsion System, " Journal of Aircraft, Vol. 46, No. 1, 2009, pp. 95-106. doi:10.2514/1.36055
Gur, O., and Rosen, A., "Optimizing Electric Propulsion Systems for Unmanned Aerial Vehicles, " Journal of Aircraft, Vol. 46, No. 4, 2009, pp. 1340-1353. doi:10.2514/1.41027
Khan, W., and Nahon, M., "Toward an Accurate Physics-Based UAV Thruster Model, " IEEE/ASME Transactions on Mechatronics, Vol. 18, No. 4, 2013, pp. 1269-1279. doi:10.1109/TMECH.2013.2264105
Hoffmann, G., Huang, H., Waslander, S., and Tomlin, C., "Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment, " AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2007-6461, Aug. 2007. doi:10.2514/6.2007-6461
Brandt, J., and Selig, M., "Propeller Performance Data at LowReynolds Numbers, " 49th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2011-1255, Jan. 2011. doi:10.2514/6.2011-1255
Katz, J., and Plotkin, A., Low Speed Aerodynamics, Cambridge Univ. Press, New York, 2001, pp. 331-360, Chap. 12.
Deters, R., Ananda, G., and Selig, M., "Reynolds Number Effects on the Performance of Small-Scale Propellers, " 32nd AIAA Applied Aerodynamics Conference, AIAA Paper 2014-2151, June 2014. doi:10.2514/6.2014-2151
Ol, M., Zeune, C., and Logan, M., "Analytical-Experimental Comparison for Small Electric Unmanned Air Vehicle Propellers, " 26th AIAA Applied Aerodynamics Conference, AIAA Paper 2008-7345, Aug. 2008. doi:10.2514/6.2008-7345
Ribner, H., "Formulas for Propellers in Yaw and Charts of the Side-Force Derivative, " NACA Rept. 819, 1945.
Ribner, H., "Propellers in Yaw, " NACA Rept. 820, 1945.
Dubbioso, G., Muscari, R., and Di Mascio, A., "Analysis of a Marine Propeller Operating in Oblique Flow. Part 2: Very High Incidence Angles, " Computers and Fluids, Vol. 92, 2014, pp. 56-81.
Islam, M., Akinturk, A., Liu, P., and Veitch, B., "Performance Characteristics of a Podded Propulsor During Dynamic Azimuthing, " 8th Canadian Marine Hydromechanics and Structures Conference, National Research Council Canada, NRC Publ. Archive, Ottawa, Ontario, 2007.
Selig, M., "Modeling Propeller Aerodynamics and Slipstream Effects on SmallUAVs in Realtime, " AIAA Atmospheric Flight Mechanics 2010 Conference, AIAA Paper 2010-7398, Aug. 2010. doi:10.2514/6.2010-7938
McCormick, B.W., Aerodynamics, Aeronautics, and Flight Mechanics, 2nd ed., Wiley, New York, 1995, pp. 334-364, Chap. 6.
Powers, C., Mellinger, D., Kushleyev, A., Kothmann, B., and Kumar, V., Influence of Aerodynamics and Proximity Effects in Quadrotor Flight, Springer International Publ., Heidelberg, Germany, 2013, pp. 289-302.
Kominer, S., and Rosen, A., "New Actuator-Disk Model for a Skewed Flow, " AIAA Journal, Vol. 51, No. 6, 2013, pp. 1382-1393. doi:10.2514/1.J052057
Heyson, H., and Katzoff, S., "Normal Component of InducedVelocity in the Vicinity of a Lifting Rotor with a Nonuniform Disk Loading, " NACA TN-3690, 1956.
Theys, B., Dimitriadis, G., Andrianne, T., Hendrick, P., and De Schutter, J., "Wind Tunnel Testing of a VTOLMAVPropeller in Tilted Operating Mode, " 2014 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE Publ., Piscataway, NJ, May 2014, pp. 1064-1072. doi:10.1109/ICUAS.2014.6842358
Brandt, J., Deters, R., Ananda, G., and Selig, M., "UIUC Propeller Data Site, "[online database], Univ. of Illinois at Urbana-Champaign, Urbana, IL, http://m-selig.ae.illinois.edu/props/propDB.html [retrieved 7 July 2016].
Theys, B., Dimitriadis, G., Hendrick, P., and De Schutter, J., "Influence of Propeller Configuration on Propulsion System Efficiency of Multi-Rotor Unmanned Aerial Vehicles, " 2016 International Conference on Unmanned Aircraft Systems, ICUAS, IEEE Publ., Piscataway, NJ, June 2016, pp. 195-201. doi:10.1109/ICUAS.2016.7502520
Bulka, E., and Nahon, M., "Wind Effects on a Quadrotor, " Bachelor of Engineering Honours Thesis, Department of Mechanical Engineering, McGill Univ., Montreal, Canada, 2014.
Glauert, H., Airplane Propellers, Springer, Berlin, 1935, pp. 169-360.
Leishman, J., Principles of Helicopter Aerodynamics, Cambridge Univ. Press, New York, 2006, pp. 78-124, Chap. 3.
Tsadok, T., "Thruster Modeling for Small Unmanned Aerial Vehicles with Coaxial-Rotors, " M.S. Thesis, McGill Univ., Montreal, 2014.
Drela, M., and Youngren, H., Xfoil Subsonic Airfoil Development System [online database], http://web.mit.edu/drela/Public/web/xfoil/ [retrieved 1 April 2015].
Deters, R., "Performance and Slipstream Characteristics of Small-Scale Propellers at Low Reynolds Numbers, " Ph.D. Thesis, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 2014.
Chen, R. T. N., "A Survey of Nonuniform Inflow Models for Rotorcraft Flight Dynamics and Control Applications, " NASA TM-102219, 1989.
Drees, J., "ATheory of Airflow Through Rotors and Its Application to Some Helicopter Problems, " Journal of the Helicopter Association of Great Britain, Vol. 3, No. 2, 1949, pp. 79-104.
Masquelier, M., "Application of the Vortex Lattice Method to Propeller Performance Analysis, " M.S. Thesis, Air Force Inst. of Technology, Wright-Patterson AFB, OH, 1982.
Kobayakawa, M., and Onuma, H., "Propeller Aerodynamic Performance by Vortex-Lattice Method, " Journal of Aircraft, Vol. 22, No. 8, 1985, pp. 649-654. doi:10.2514/3.45181
Rosen, A., and Graber, A., "Free Wake Model of Hovering Rotors Having Straight or Curved Blades, " Journal of the American Helicopter Society, Vol. 33, No. 3, 1988, pp. 11-19.
He, L., and Kinnas, S., "AVortex-Lattice Method for the Prediction of Unsteady Performance of Marine Propellers and Current Turbines, " International Journal of Offshore and Polar Engineering, Vol. 23, No. 3, 2013, pp. 210-217.
Jeong, M., Yoo, S., and Lee, I., "Aeroelastic Analysis for Large Wind Turbine Rotor Blades, " 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 2011-1950, April 2011.
Wang, Z., Chen, P., Sarhaddi, D., and Diner, A., "Extension of MSC Nastran UVLM: OpenFSI for Rotational Applications Including Wind Turbines, " 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 2012-1828, April 2012. doi:10.2514/6.2012-1828
Murua, J., Palacios, R., and Graham, J., "Applications of the Unsteady Vortex-Lattice Method in Aircraft Aeroelasticity and Flight Dynamics, " Progress in Aerospace Sciences, Vol. 55, Nov. 2012, pp. 46-72. doi:10.1016/j.paerosci.2012.06.001
Simpson, R., and Palacios, R., "Induced-Drag Calculations in the Unsteady Vortex Lattice Method, " AIAA Journal, Vol. 51, No. 7, 2013, pp. 1775-1779. doi:10.2514/1.J052136