[en] Carbon materials with tailored texture can be obtained from drying and pyrolysis of resorcinol-formaldehyde gels. The pore texture of both dried and pyrolyzed material depends on the drying process. Several more or less expensive methods (supercritical drying, freeze-drying, evaporative drying) were tested in order to determine which process is the most suitable for the synthesis of a porous carbon with a definite texture. Supercritical drying leads to the highest pore volume and the widest texture range, but residual surface tensions and shrinkage are not avoided when the pore size is small or when the material density is low; this hampers to fix both the pore volume and the pore size easily. Monoliths are very difficult to obtain by freeze-drying, and the appearance of huge channels due to ice crystal growth at high dilution ratio hinders the fabrication of low density materials. Moreover, gels with small pores do not remain frozen throughout drying, which leads to surface tensions and shrinkage. Although generally replaced by more complicated techniques, evaporative drying is suitable when dense carbons are needed or when the only selection criterion is the pore size: all pore sizes are reachable, but this parameter is in this case strongly correlated to the pore volume. (C) 2005 Elsevier Ltd. All rights reserved.
Disciplines :
Chemical engineering Materials science & engineering
Author, co-author :
Job, Nathalie ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Chimie physique appliquée
Thery, Alexandre
Pirard, René ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Chimie physique appliquée
Marien, José ; Université de Liège - ULiège > Département de chimie appliquée > Chimie générale et chimie physique
Kocon, Laurent
Rouzaud, Jean-Noël
Béguin, François
Pirard, Jean-Paul ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Génie catalytique
Language :
English
Title :
Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials
R.W. Pekala Organic aerogels from the polycondensation of resorcinol with formaldehyde J Mater Sci 24 1989 3221 3227
K. Jurewicz, E. Frackowiak, and F. Béguin Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials Appl Phys A 78 2004 981 987
E. Frackowiak, and F. Béguin Carbon materials for the electrochemical storage of energy in capacitors Carbon 39 2001 937 950
R.W. Pekala, C.T. Alviso, and J.D. LeMay Organic aerogels: a new type of ultrastructured polymer L.L. Hench J.K. West Chemical processing of advanced materials 1992 Wiley New York 671 683
R.W. Pekala, J.C. Farmer, C.T. Alviso, T.D. Tran, S.T. Mayer, and J.M. Miller Carbon aerogels for electrochemical applications J Non-Cryst Solids 225 1998 74 80
R.W. Pekala, and C.T. Alviso Carbon aerogels and xerogels Mater Res Soc Sympos Proc 270 1992 3 14
Pekala RW. Low density resorcinol-formaldehyde aerogels. US Patent 4997804, 1991.
R.W. Pekala Structure of organic aerogels. 1. Morphology and scaling Macromolecules 26 1993 5487 5493
G.M. Pajonk, A. Venkateswara Rao, N. Pinto, F. Ehrburger-Dolle, and M. Bellido Gil Monolithic carbon aerogels for fuel cell electrodes B. Delmon Preparation of catalysts VII Studies in surface science and catalysts vol. 118 1998 Elsevier Amsterdam 167 174
Théry A, Clinard C, Béguin F, Kocon L, Rouzaud JN. Characterization of carbon aerogels. Extended abstracts. In: Int conf carbon 2002, September 16-19, Beijing, China, G014.
Théry A, Béguin F, Kocon L, Lillo-Rodenas M, Linares-Solano A, Rouzaud JN. Extended abstracts. In: Int conf carbon 2004, July 11-16, Providence, RI, USA.
B. Mathieu, S. Blacher, R. Pirard, J.P. Pirard, B. Sahouli, and F. Brouers Freeze-dried resorcinol-formaldehyde gels J Non-Cryst Solids 212 1996 250 260
B. Mathieu, B. Michaux, O. Van Cantford, F. Noville, R. Pirard, and J.P. Pirard Synthesis of resorcinol-formaldehyde aerogels by the freeze-drying method Ann Chim Fr 22 1997 19 29
R. Kocklenberg, B. Mathieu, S. Blacher, R. Pirard, J.P. Pirard, and R. Sobry Texture control of freeze-dried resorcinol-formaldehyde gels J Non-Cryst Solids 225 1998 8 13
H. Tamon, H. Ishizaka, T. Yamamoto, and T. Suzuki Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors Carbon 38 2000 1099 1105
C. Lin, and J.A. Ritter Effect of synthesis pH on the structure of carbon xerogels Carbon 35 1997 1271 1278
C. Lin, and J.A. Ritter Carbonization and activation of sol-gel derived carbon xerogels Carbon 38 2000 849 861
S.A. Al-Muhtaseb, and J.A. Ritter Preparation and properties of resorcinol-formaldehyde organic and carbon gels Adv Mater 15 2003 101 114
Mayer ST, Kaschmitter JL, Pekala RW. Method of low pressure and/or evaporative drying of aerogel. US Patent 5420168, 1995.
R. Saliger, V. Bock, R. Petricevic, T. Tillotson, S. Geis, and J. Fricke Carbon aerogels from dilute catalysis of resorcinol with formaldehyde J Non-Cryst Solids 221 1997 144 150
C.W. Robert CRC handbook of chemistry and physics 57th ed. 1976 1977 CRC Press Cleveland, OH
Pirard JP, Pirard R, Job N. Porous carbon material. Patent WO 03/026048 A1, 2003.
N. Job, R. Pirard, J. Marien, and J.P. Pirard Porous carbon xerogels with texture tailored by pH control during sol-gel process Carbon 42 2004 619 628
N. Job, R. Pirard, J. Marien, and J.P. Pirard Synthesis of transition metal-doped carbon xerogels by solubilization of metal salts in resorcinol-formaldehyde aqueous solution Carbon 42 2004 3217 3227
A. Léonard, N. Job, S. Blacher, J.P. Pirard, M. Crine, and W. Jomaa Suitability of convective air drying for the production of porous resorcinol-formaldehyde xerogels Carbon 43 2005 1808 1811
Léonard A, Job N, Jomaa W, Pirard JP, Crine M, Puigalli JR. Textural comparison of resorcinol-formaldehyde xerogels obtained by vacuum drying and convective drying. In: Extended abstracts, 7th world congress and 5th European congress of chemical engineering, Glasgow, Scotland, July 10-14, 2005.
A.J. Lecloux Texture of catalysts J.R. Anderson M Boudart Catalysis, science and technology vol. 2 1981 Springer Berlin 171 230
E.W. Washburn Note on a method of determining distribution of pore sizes in a porous material Proc Nat Acad Sci 7 1921 115 116
R. Pirard, S. Blacher, F. Brouers, and J.P. Pirard Interpretation of mercury porosimetry applied to aerogels J Mater Res 10 1995 2114 2119
R. Pirard, B. Heinrichs, and J.P. Pirard Mercury porosimetry applied to low density xerogels B. McEnaney T.J. Mays J. Rouquerol F. Rodriguez-Reineso K.S.W. Sing K.K. Unger Characterisation of porous solids IV 1997 The Royal Society of Chemistry Cambridge (UK) 460 466
C. Alié, R. Pirard, A.J. Lecloux, and J.P. Pirard Preparation of low density xerogels through additives to TEOS-based alcogels J Non-Cryst Solids 246 1999 216 228
F.A.L. Dullien Porous media, fluid transport and pore structure 1979 Academic Press New York
C. Alié, R. Pirard, and J.P. Pirard Study of the morphology of porous silica materials K.K. Unger Characterization of porous solids V Studies in surface science and catalysts vol. 128 2000 Elsevier Amsterdam 177 186