Multibody dynamics; Lie group integrator; Generalized-alpha method; Differential-algebraic equations
Abstract :
[en] Lie group integrators preserve by construction the Lie group structure of a nonlinear configuration space. In multibody dynamics, they support a representation of (large) rotations in a Lie group setting that is free of singularities. The resulting equations of motion are differential equations on a manifold with tangent spaces being parametrized by the corresponding Lie algebra. In the present paper, we discuss the time discretization of these equations of motion by a generalized-alpha Lie group integrator for constrained systems and show how to exploit in this context the linear structure of the Lie algebra. This linear structure allows a very natural definition of the generalized-alpha Lie group integrator, an efficient practical implementation and a very detailed error analysis. Furthermore, the Lie algebra approach may be combined with analytical transformations that help to avoid an undesired order reduction phenomenon in generalized-alpha time integration. After a tutorial-like step-by-step introduction to the generalized-alpha Lie group integrator, we investigate its convergence behaviour and develop a novel initialization scheme to achieve second-order accuracy in the application to constrained systems. The theoretical results are illustrated by a comprehensive set of numerical tests for two Lie group formulations of a rotating heavy top.
Disciplines :
Mechanical engineering
Author, co-author :
Arnold, Martin
Cardona, Alberto; Universidad Nacional del Litoral - CONICET > CIMEC
Bruls, Olivier ; Université de Liège > Département d'aérospatiale et mécanique > Laboratoire des Systèmes Multicorps et Mécatroniques
Language :
English
Title :
A Lie algebra approach to Lie group time integration of constrained systems
Publication date :
2016
Main work title :
Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Arnold, M., & Brüls, O. (2007). Convergence of the generalized-α scheme for constrained mechanical systems. Multibody System Dynamics, 18, 185–202. doi:10.1007/s11044-007-9084-0.
Arnold, M., Brüls, O., & Cardona, A. (2011a). Convergence analysis of generalized-α Lie group integrators for constrained systems. In J. C. Samin & P. Fisette (Eds.), Proceedings of Multibody Dynamics 2011 (ECCOMAS Thematic Conference), Brussels, Belgium.
Arnold, M., Brüls, O., & Cardona, A. (2011b). Improved stability and transient behaviour of generalized-α time integrators for constrained flexible systems. In Fifth International Conference on Advanced COmputational Methods in ENgineering (ACOMEN 2011), Liège, Belgium, 14–17 November 2011.
Arnold, M., Burgermeister, B., Führer, C., Hippmann, G., & Rill, G. (2011c). Numerical methods in vehicle system dynamics: State of the art and current developments. Vehicle System Dynamics, 49, 1159–1207. doi:10.1080/00423114.2011.582953.
Arnold, M., Cardona, A., & Brüls, O. (2014). Order reduction in time integration caused by velocity projection. In Proceedings of the 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics, 30 June–3 July 2014. BEXCO. Korea: Busan.
Arnold, M., Brüls, O., & Cardona, A. (2015). Error analysis of generalized-α Lie group time integration methods for constrained mechanical systems. Numerische Mathematik, 129, 149– 179. doi:10.1007/s00211-014-0633-1.
Betsch, P., & Leyendecker, S. (2006). The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: Multibody dynamics. International Journal for Numerical Methods in Engineering, 67, 499–552. doi:10.1002/nme.1639.
Betsch, P., & Siebert, R. (2009). Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration. International Journal for Numerical Methods in Engineering, 79, 444–473. doi:10.1002/nme.2586.
Bottasso, C. L., & Borri, M. (1998). Integrating finite rotations. Computer Methods in Applied Mechanics and Engineering, 164, 307–331. doi:10.1016/S0045-7825(98)00031-0.
Bottasso, C. L., Bauchau, O. A., & Cardona, A. (2007). Time-step-size-independent conditioning and sensitivity to perturbations in the numerical solution of index three differential algebraic equations. SIAM Journal on Scientific Computing, 29, 397–414. doi:10.1137/050638503.
Brenan, K. E., Campbell, S. L., & Petzold, L. R. (1996). Numerical solution of initial-value problems in differential-algebraic equations (2nd ed.). Philadelphia: SIAM.
Brüls, O., & Arnold, M. (2008). The generalized-α scheme as a linear multistep integrator: Towards a general mechatronic simulator. Journal of Computational and Nonlinear Dynamics, 3(4), 041007. doi:10.1115/1.2960475.
Brüls, O., & Cardona, A. (2010). On the use of Lie group time integrators in multibody dynamics. Journal of Computational and Nonlinear Dynamics, 5, 031002. doi:10.1115/1.4001370.
Brüls, O., & Golinval, J. C. (2006). The generalized-α method in mechatronic applications. ZAMM— Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 86, 748–758. doi:10.1002/zamm.200610283.
Brüls, O., Arnold, M., & Cardona, A. (2011). Two Lie group formulations for dynamic multibody systems with large rotations. In Proceedings of IDETC/MSNDC 2011, ASME 2011 International Design Engineering Technical Conferences, Washington, USA.
Brüls, O., Cardona, A., & Arnold, M. (2012). Lie group generalized-α time integration of constrained flexible multibody systems. Mechanism and Machine Theory, 48, 121–137. doi:10.1016/j.mechmachtheory.2011.07.017.
Cardona, A., & Géradin, M. (1989). Time integration of the equations of motion in mechanism analysis. Computers and Structures, 33, 801–820. doi:10.1016/0045-7949(89)90255-1.
Cardona, A., & Géradin, M. (1994). Numerical integration of second order differential-algebraic systems in flexible mechanism dynamics. In M. F. O. Seabra Pereira & J. A. C. Ambrósio (Eds.), Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, NATO ASI Series (Vol. E–268). Dordrecht: Kluwer Academic Publishers. doi:10.1007/978-94-011-1166-9_16.
Celledoni, E., & Owren, B. (2003). Lie group methods for rigid body dynamics and time integration on manifolds. Computer Methods in Applied Mechanics and Engineering, 192, 421–438. doi:10. 1016/S0045-7825(02)00520-0.
Chung, J., & Hulbert, G. (1993). A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. ASME Journal of Applied Mechanics, 60, 371– 375. doi:10.1115/1.2900803.
Crouch, P. E., & Grossman, R. (1993). Numerical integration of ordinary differential equations on manifolds. Journal of Nonlinear Science, 3, 1–33. doi:10.1007/BF02429858.
Deuflhard, P., Hairer, E., & Zugck, J. (1987). One-step and extrapolation methods for differential-algebraic systems. Numerische Mathematik, 51, 501–516. doi:10.1007/BF01400352.
Erlicher, S., Bonaventura, L., & Bursi, O. (2002). The analysis of the generalized-α method for non-linear dynamic problems. Computational Mechanics, 28, 83–104. doi:10.1007/s00466-001-0273-z.
García de Jalón, J., & Bayo, E. (1994). Kinematic and dynamic simulation of multibody systems: The real-time challenge. New York: Springer-Verlag.
García de Jalón, J., & Gutiérrez-López, M. D. (2013). Multibody dynamics with redundant constraints and singular mass matrix: Existence, uniqueness, and determination of solutions for accelerations and constraint forces. Multibody System Dynamics, 30, 311–341. doi:10.1007/s11044-013-9358-7.
Gear, C. W., Leimkuhler, B., & Gupta, G. K. (1985). Automatic integration of Euler-Lagrange equations with constraints. Journal of Computational and Applied Mathematics, 12&13, 77–90. doi:10.1016/0377-0427(85)90008-1.
Géradin, M., & Cardona, A. (2001). Flexible multibody dynamics: A finite element approach. Chichester: Wiley.
Géradin, M., & Cardona, A. (1989). Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra. Computational Mechanics, 4, 115–135. doi:10. 1007/BF00282414.
Golub, G. H., & van Loan, Ch. F. (1996). Matrix computations (3rd ed.). Baltimore London: The Johns Hopkins University Press.
Hairer, E., & Wanner, G. (1996). Solving ordinary differential equations. II. Stiff and differential-algebraic problems (2nd ed.). Berlin, Heidelberg, New York: Springer-Verlag.
Hairer, E., Nørsett, S. P., & Wanner, G. (1993). Solving ordinary differential equations. I. Nonstiff problems (2nd ed.). Berlin, Heidelberg, New York: Springer-Verlag.
Hairer, E., Lubich, Ch., & Wanner, G. (2006). Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations (2nd ed.). Berlin, Heidelberg, New York: Springer-Verlag.
Hilber, H. M., & Hughes, T. J. R. (1978). Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics. Earthquake Engineering and Structural Dynamics, 6, 99–117. doi:10.1002/eqe.4290060111.
Hilber, H. M., Hughes, T. J. R., & Taylor, R. L. (1977). Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering and Structural Dynamics, 5, 283–292. doi:10.1002/eqe.4290050306.
Iserles, A., Munthe-Kaas, H. Z., Nørsett, S., & Zanna, A. (2000). Lie-group methods. Acta Numerica, 9, 215–365.
Jay, L. O., & Negrut, D. (2007). Extensions of the HHT-method to differential-algebraic equations in mechanics. Electronic Transactions on Numerical Analysis, 26, 190–208.
Jay, L. O., & Negrut, D. (2008). A second order extension of the generalized-α method for constrained systems in mechanics. In C. Bottasso (Ed.), Multibody Dynamics. Computational Methods and Applications, Computational Methods in Applied Sciences (Vol. 12, pp. 143–158). Dordrecht: Springer. doi:10.1007/978-1-4020-8829-2_8.
Kelley, C. T. (1995). Iterative methods for linear and nonlinear equations. Philadelphia: SIAM.
Kobilarov, M., Crane, K., & Desbrun, M. (2009). Lie group integrators for animation and control of vehicles. ACM Transactions on Graphics, 28(2, Article 16), 1–14. doi:10.1145/1516522. 1516527.
Lubich, Ch. (1993). Integration of stiff mechanical systems by Runge-Kutta methods. Zeitschrift für angewandte Mathematik und Physik ZAMP, 44, 1022–1053. doi:10.1007/BF00942763.
Lunk, C., & Simeon, B. (2006). Solving constrained mechanical systems by the family of Newmark and α-methods. Zeitschrift für Angewandte Mathematik und Mechanik, 86, 772–784. doi:10.1002/zamm.200610285.
Müller, A. (2010). Approximation of finite rigid body motions from velocity fields. ZAMM—Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 90, 514–521. doi:10.1002/zamm.200900383.
Müller, A., & Terze, Z. (2014a). On the choice of configuration space for numerical Lie group integration of constrained rigid body systems. Journal of Computational and Applied Mathematics, 262, 3–13. doi:10.1016/j.cam.2013.10.039.
Müller, A., & Terze, Z. (2014b). The significance of the configuration space Lie group for the constraint satisfaction in numerical time integration of multibody systems. Mechanism and Machine Theory, 82, 173–202. doi:10.1016/j.mechmachtheory.2014.06.014.
Munthe-Kaas, H. (1995). Lie-Butcher theory for Runge-Kutta methods. BIT Numerical Mathematics, 35, 572–587. doi:10.1007/BF01739828.
Munthe-Kaas, H. (1998). Runge-Kutta methods on Lie groups. BIT Numerical Mathematics, 38, 92–111. doi:10.1007/BF02510919.
Negrut, D., Rampalli, R., Ottarsson, G., & Sajdak, A. (2005). On the use of the HHT method in the context of index 3 differential algebraic equations of multi-body dynamics. In J. M. Goicolea, J. Cuadrado & J. C. García Orden (Eds.), Proceedings of Multibody Dynamics 2005 (ECCOMAS Thematic Conference), Madrid, Spain.
Orel, B. (2010). Accumulation of global error in Lie group methods for linear ordinary differential equations. Electronic Transactions on Numerical Analysis, 37, 252–262.
Petzold, L. R., & Lötstedt, P. (1986). Numerical solution of nonlinear differential equations with algebraic constraints II: Practical implications. SIAM Journal on Scientific and Statistical Computing, 7, 720–733. doi:10.1137/0907049.
Quarteroni, A., Sacco, R., & Saleri, F. (2000). Numerical mathematics. New York: Springer.
Sanborn, G. G., Choi, J., & Choi, J. H. (2014). Review of RecurDyn integration methods. In Proceedings of the 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics, 30 June–3 July (2014). BEXCO. Korea: Busan.
Simo, J. C., & Vu-Quoc, L. (1988). On the dynamics in space of rods undergoing large motions—A geometrically exact approach. Computer Methods in Applied Mechanics and Engineering, 66, 125–161. doi:10.1016/0045-7825(88)90073-4.
Sonneville, V., Cardona, A., & Brüls, O. (2014). Geometrically exact beam finite element formulated on the special Euclidean group. Computer Methods in Applied Mechanics and Engineering, 268, 451–474. doi:10.1016/j.cma.2013.10.008.
Walter, W. (1998). Ordinary Differential Equations. Number 182 in Graduate Texts in Mathematics. Berlin: Springer.
Wensch, J. (2001). Extrapolation methods in Lie groups. Numerische Mathematik, 89, 591–604. doi:10.1007/s211-001-8017-5.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.