On the Habitability of Desert Varnish: a Combined Study by Micro-Raman Spectroscopy, X-Ray Diffraction and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry
[en] In 2020, the ESA ExoMars and NASA Mars 2020 missions will be launched to Mars, searching for evidence of past and present life. In preparation for these missions, terrestrial analogue samples of rock formations on Mars are studied in detail in order to optimize the scientific information that the analytical instrumentation will return. Desert varnishes are thin mineral coatings found on rocks in arid and semi-arid environments on Earth that are recognized as analogue samples. During the formation of desert varnishes (which takes many hundreds of years) organic matter is incorporated and microorganisms may also play an active role in the formation process. During this study, four complementary analytical techniques proposed for Mars missions (X-rays diffraction, Raman spectroscopy, elemental analysis and pyrolysis-gas chromatography-mass spectrometry) were used to interrogate samples of desert varnish and to describe their capacity to sustain life under extreme scenario. For the first time, both the geochemistry and the organic compounds associated with desert varnish are described using an identical set of samples. XRD and Raman spectroscopy measurements were used to non-destructively interrogate the mineralogy of the samples. In addition, the use of Raman spectroscopy instruments enabled the detection of β-carotene, a highly Raman active biomarker. The content and the nature of the organic material in the samples was further investigated using elemental analysis and methylated Py-GC-MS and a bacterial origin was determined to be likely. In the context of planetary exploration, we describe the habitable nature of desert varnish based on the bio-geochemical composition of the samples. Possible
interference of the geological substrate on the detectability of pyrolysis products is also suggested.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Malherbe, Cédric ; Université de Liège > Département de chimie (sciences) > Chimie analytique inorganique
Hutchinson, Ian; University of Leicester > Physics and Astronomy
Ingley, Richard; University of Leicester > Physics and Astronomy
Boom, Arnoud; University of Leicester > Geography
Carr, Andrew; University of Leicester > Geography
Edwards, Howell; University of Leicester > Physics and Astronomy
Vertruyen, Bénédicte ; Université de Liège > Département de chimie (sciences) > Chimie inorganique structurale
Eppe, Gauthier ; Université de Liège > Département de chimie (sciences) > Chimie analytique inorganique
Language :
English
Title :
On the Habitability of Desert Varnish: a Combined Study by Micro-Raman Spectroscopy, X-Ray Diffraction and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry
Publication date :
2017
Journal title :
Astrobiology
ISSN :
1531-1074
eISSN :
1557-8070
Publisher :
Mary Ann Liebert, Inc., New Rochelle, United States - New York
Allen, C.C., Westall, F., and Schelble, R.T. (2001) Importance of a martian hematite site for astrobiology. Astrobiology 1:111-123.
Brinckerhoff, W.B., Pinnick, V.T., van Amerom, F.H.W., Danell, R.M., Arevalo, R.D., Atanassova, M.S., Xiang, L., Mahaffy, P.R., Cotter, R.J., Goesmann, F., and Steininger, H. (2013) Mars Organic Molecule Analyzer (MOMA) mass spectrometer for ExoMars 2018 and beyond. In 2013 IEEE Aerospace Conference, IEEE, Piscataway, NJ, doi:10.1109/ AERO.2013.6496942.
Carr, A.S., Boom, A., Chase, B.M., Meadows, M.E., Roberts, Z.E., Britton, M.N., and Cumming, A.M.J. (2013) Biomescale characterisation and differentiation of semi-arid and arid zone soil organic matter compositions using pyrolysis-GC/MS analysis. Geoderma 200-201:189-201.
Challinor, J.M. (1996) A rapid pyrolysis derivatization gas chromatography-mass spectrometry method for profiling of fatty acids in trace quantities of lipids. J Anal Appl Pyrolysis 37:185-197.
Chyba, C. and Sagan, C. (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125-132.
Cudennec, Y. and Lecerf, A. (2005) Topotactic transformations of goethite and lepidocrocite into hematite and maghemite. Solid State Sciences 7:520-529.
de Faria, D.L.A. and Lopes, F.N. (2007) Heated goethite and natural hematite: can Raman spectroscopy be used to differentiate them? Vib Spectrosc 45:117-121.
de Faria, D.L.A., Silva, S.V., and de Oliveira, M.T. (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873-878.
DiGregorio, B.E. (2002) Rock varnish as a habitat for extant life on Mars. Proc SPIE 4495, doi:10.1117/12.454750.
Dorn, R.I. (2007) Baking black opal in the desert sun: the importance of silica in desert varnish: Comment and Reply: Comment. Geology 35:e122-e123.
Dorn, R.I. (2008) Rock varnish. In Geochemical Sediments and Landscapes, edited by D.J. Nash and S.J. McLaren, Blackwell Publishing, Malden, MA, pp 246-297.
Dorn, R.I. and DeNiro, M.J. (1985) Stable carbon isotope ratios of rock varnish organic matter: a new paleoenvironmental indicator. Science 227:1472-1474.
Dorn, R.I., DeNiro, M.J., and Ajie, H.O. (1987) Isotopic evidence for climatic influence on alluvial-fan development in Death Valley, California. Geology 15:108-110.
Edwards, H.G., Hutchinson, I.B., Ingley, R., Waltham, N.R., Beardsley, S., Dowson, S., and Woodward, S. (2011) The search for signatures of early life on Mars: Raman spectroscopy and the ExoMars mission. Spectroscopy Europe 23(1):6.
Edwards, H.G.M. (2007) Question 2: Raman spectroscopic approach to analytical astrobiology: the detection of key biomolecular markers in the search for life. Orig Life Evol Biosph 37:335-339.
Edwards, H.G.M., Farwell, D.W., de Faria, D.L.A., Monteiro, A.M.F., Afonso, M.C., De Blasis, P., and Eggers, S. (2001) Raman spectroscopic study of 3000-year-old human skeletal remains from a sambaqui, Santa Catarina, Brazil. J Raman Spectrosc 32:17-22.
Edwards, H.G.M., Hutchinson, I.B., Ingley, R., Parnell, J., Vitek, P., and Jehlička, J. (2013) Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission. Astrobiology 13:543-549.
Ehrenfreund, P. and Charnley, S.B. (2000) Organic molecules in the interstellar medium, comets, and meteorites: a voyage from dark clouds to the early Earth. Annu Rev Astron Astrophys 38:427-483.
Ehrlich, H.L. and Newman, D.K. (2009) Lithosphere as microbial habitat. In Geomicrobiology, 5th ed., edited by H.L. Ehrlich and D.K. Newman, CRC Press, Boca Raton, FL, pp 37-55.
ExoMars mission. (2016) ExoMars Mission 2020, ESA, Paris. Available online at http://exploration.esa.int/mars/48088-mission-overview
Fairen, A.G., Davila, A.F., Lim, D., Bramall, N., Bonaccorsi, R., Zavaleta, J., Uceda, E.R., Stoker, C., Wierzchos, J., Dohm, J.M., Amils, R., Andersen, D., and McKay, C.P. (2010) Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars. Astrobiology 10:821-843.
Faure, P., Schlepp, L., Mansuy-Huault, L., Elie, M., Jarde, E., and Pelletier, M. (2006) Aromatization of organic matter induced by the presence of clays during flash pyrolysis-gas chromatography-mass spectrometry (PyGC-MS): a major analytical artifact. J Anal Appl Pyrolysis 75:1-10.
Fisk, M.R. and Giovannoni, S.J. (1999) Sources of nutrients and energy for a deep biosphere on Mars. J Geophys Res 104: 11805-11815.
French, K.L., Rocher, D., Zumberge, J.E., and Summons, R.E. (2015) Assessing the distribution of sedimentary C40 carotenoids through time. Geobiology 13:139-151.
Geffroy-Rodier, C., Grasset, L., Sternberg, R., Buch, A., and Ambles, A. (2009) Thermochemolysis in search for organics in extraterrestrial environments. J Anal Appl Pyrolysis 85: 454-459.
Gonzalez-Vila, F.J., Ambles, A., del Rio, J.C., and Grasset, L. (2001) Characterisation and differentiation of kerogens by pyrolytic and chemical degradation techniques. J Anal Appl Pyrolysis 58-59:315-328.
Goodyear, J. (1954) The identification and determination of plagioclase felspars by the X-ray powder method. Mineral Mag 30:306-326.
Grotzinger, J.P., Sumner, D.Y., Kah, L.C., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis, K., Schieber, J., Mangold, N., Milliken, R., Conrad, P.G., Des Marais, D., Farmer, J., Siebach, K., Calef, F., Hurowitz, J., McLennan, S.M., Ming, D., Vaniman, D., Crisp, J., Vasavada, A., Edgett, K.S., Malin, M., Blake, D., Gellert, R., Mahaffy, P., Wiens, R.C., Maurice, S., Grant, J.A., Wilson, S., Anderson, R.C., Beegle, L., Arvidson, R., Hallet, B., Sletten, R.S., Rice, M., Bell, J., Griffes, J., Ehlmann, B., Anderson, R.B., Bristow, T.F., Dietrich, W.E., Dromart, G., Eigenbrode, J., Fraeman, A., Hardgrove, C., Herkenhoff, K., Jandura, L., Kocurek, G., Lee, S., Leshin, L.A., Leveille, R., Limonadi, D., Maki, J., McCloskey, S., Meyer, M., Minitti, M., Newsom, H., Oehler, D., Okon, A., Palucis, M., Parker, T., Rowland, S., Schmidt, M., Squyres, S., Steele, A., Stolper, E., Summons, R., Treiman, A., Williams, R., Yingst, A., and the MSL Science team. (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343, doi:10.1126/science.1242777.
Hartgers, W.A., Sinninghe Damste, J.S., and de Leeuw, J.W. (1995) Curie-point pyrolysis of sodium salts of functionalized fatty acids. J Anal Appl Pyrolysis 34:191-217.
Hatch, C.D., Wiese, J.S., Crane, C.C., Harris, K.J., Kloss, H.G., and Baltrusaitis, J. (2012) Water adsorption on clay minerals as a function of relative humidity: application of BET and Freundlich adsorption models. Langmuir 28:1790-1803.
Hutchinson, I.B., Ingley, R., Edwards, H.G.M., Harris, L., McHugh, M., Malherbe, C., and Parnell, J. (2014) Raman spectroscopy on Mars: identification of geological and biogeological signatures in martian analogues using miniaturized Raman spectrometers. Philos Trans A Math Phys Eng Sci 372, doi:10.1098/rsta.2014.0204.
Iniguez, E., Navarro-Gonzalez, R., De La Rosa, J., Urena-Nunez, F., Coll, P., Raulin, F., and McKay, C.P. (2009) On the oxidation ability of the NASA Mars-1 soil simulant during the thermal volatilization step: implications for the search of organics on Mars. Geophys Res Lett 36, doi:10.1029/ 2009GL040454.
Jehlička, J. and Oren, A. (2013) Use of a handheld Raman spectrometer for fast screening of microbial pigments in cultures of halophilic microorganisms and in microbial communities in hypersaline environments in nature. J Raman Spectrosc 44:1285-1291.
Jehlička, J., Edwards, H.G.M., and Culka, A. (2010) Using portable Raman spectrometers for the identification of organic compounds at low temperatures and high altitudes: exobiological applications. Philos Trans A Math Phys Eng Sci 368:3109-3125.
Jehlička, J., Culka, A., Vandenabeele, P., and Edwards, H.G.M. (2011) Critical evaluation of a handheld Raman spectrometer with near infrared (785nm) excitation for field identification of minerals. Spectrochim Acta A Mol Biomol Spectrosc 80:36-40.
Jetter, R., Kunst, L., and Samuels, A.L. (2006) Composition of plant cuticular waxes. In Biology of the Plant Cuticle, edited by M. Riederer and C. Muller, Blackwell Publishing, Oxford, UK, pp 145-181.
Jia, W. and Peng, P. (2005) Molecular structure of kerogens from source rocks of the Tarim Basin: a study by Py-GC-MS and methylation-Py-GC-MS. Science in China Series D: Earth Sciences 48:313-325.
Johnson, A.P., Cleaves, H.J., Dworkin, J.P., Glavin, D.P., Lazcano, A., and Bada, J.L. (2008) The Miller volcanic spark discharge experiment. Science 322, doi:10.1126/science.1161527.
Jorge Villar, S.E. and Edwards, H.G.M. (2006) Raman spectroscopy in astrobiology. Anal Bioanal Chem 384:100-113.
Jorge Villar, S.E., Edwards, H., and Benning, L. (2006) Raman spectroscopic and scanning electron microscopic analysis of a novel biological colonisation of volcanic rocks. Icarus 184:158-169.
Konhauser, K. and Riding, R. (2012) Bacterial biomineralization. In Fundamentals of Geobiology, edited by A.H. Knoll, D.E. Canfield, and K.O. Konhauser, John Wiley &Sons, pp 105-130.
Lanza, N.L., Fischer W.W., Wiens, R.C., Grotzinger J., Ollila, A.M., Cousin, A., Anderson, R.B., Clark, B.C., Gellert, R., Mangold, N., Maurice, S., Le Mouelic, S., Nachon, M., Schmidt, M., Berger, J., Clegg, S.M., Forni, O., Hardgrove, C., Melikechi, N., Newsom, H.E., and Sautter, V. (2014) High manganese concentrations in rocks at Gale Crater, Mars. Geophys Res Lett 41:5755-5763.
Lepot, K., Compere, P., Gerard, E., Namsaraev, Z., Verleyen, E., Tavernier, I., Hodgson, D.A., Vyverman, W., Gilbert, B., Wilmotte, A., and Javaux, A.J. (2014) Organic and mineral imprints in fossil photosynthetic mats of an east Antarctic lake. Geobiology 12:424-450.
Lopez-Reyes, G., Rull, F., Venegas, G., Westall, F., Foucher, F., Bost, N., Sanz, A., Catala-Espi, A., Vegas, A., Hermosilla, I., Sansano, A., and Medina, J. (2013) Analysis of the scientific capabilities of the ExoMars Raman Laser Spectrometer instrument. European Journal of Mineralogy 25: 721-733.
Malherbe, C., Ingley, R., Hutchinson, I., Edwards, H., Carr, A.S., Harris, L., and Boom, A. (2015) Biogeological analysis of desert varnish using portable Raman spectrometers. Astrobiology 15:442-452.
Mancinelli, R.L. and White, M.R. (1996) Mineralogical analysis of desert varnish by DTA/GC: applicability to the exobiology of Mars [abstract 1402]. In 27th Lunar and Planetary Science Conference, Lunar and Planetary Institute, Houston.
Marinangeli, L., Hutchinson, I., Baliva, A., Stevoli, A., Ambrosi, R., Critani, F., Delhez, R., Scandelli, L., Holland, A., Nelms, N., and the Mars-XRD Team. (2007) An European XRD/XRF instrument for the ExoMars Mission [abstract 1322]. In 38th Lunar and Planetary Science Conference, Lunar and Planetary Institute, Houston.
Marnocha, C.L. and Dixon, J.C. (2013) Bacterial communities in Fe/Mn films, sulphate crusts, and aluminium glazes from Swedish Lapland: implications for astrobiology on Mars. International Journal of Astrobiology 12:345-356.
Marshall, C.P. and Olcott Marshall, A. (2010) The potential of Raman spectroscopy for the analysis of diagenetically transformed carotenoids. Philos Trans A Math Phys Eng Sci 368: 3137-3144.
Marshall, C.P., Love, G.D., Snape, C.E., Hill, A.C., Allwood, A.C., Walter, M.R., Van Kranendonk, M.J., Bowden, S.A., Sylva, S.P., and Summons, R.E. (2007) Structural characterization of kerogen in 3.4 Ga Archaean cherts from the Pilbara Craton, Western Australia. Precambrian Res 155: 1-23.
Mellon, M.T., Arvidson, R.E., Sizemore, H.G., Searls, M.L., Blaney, D.L., Cull, S., Hecht, M.H., Heet, T.L., Keller, H.U., Lemmon, M.T., Markiewicz, W.J., Ming, D.W., Morris, R.V., Pike, W.T., and Zent, A.P. (2009) Ground ice at the Phoenix landing site: stability state and origin. J Geophys Res 114, doi:10.1029/2009JE003417.
Miralles, I., Jorge-Villar, S.E., Canton, Y., and Domingo, F. (2012) Using a mini-Raman spectrometer to monitor the adaptive strategies of extremophile colonizers in arid deserts: relationships between signal strength, adaptive strategies, solar radiation, and humidity. Astrobiology 12:743-753.
NASA Mars 2020. (2014) NASA Announces Mars 2020 Rover Payload to Explore the Red Planet as Never Before, NASA's Mars Exploration Program (MEP), Washington, DC. Available online at http://nasa.gov/press/2014/july/nasa-announces-mars-2020-rover-payload-to-explore-The-red-planet-as-never-before
NASA Water on Mars. (2015) NASA Confirms Evidence that Liquid Water Flows on Today's Mars, NASA's Mars Exploration Program (MEP), Washington, DC. Available online at https://www.nasa.gov/press-release/nasa-confirms-evidencethat-liquid-water-flows-on-today-s-mars
Navarro-Gonzalez, R., Rainey, F.A., Molina, P., Bagaley, D.R., Hollen, B.J., de la Rosa, J., Small, A.M., Quinn, R.C., Grunthaner, F.J., Caceres, L., Gomez-Silva, B., and McKay, C.P. (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302:1018-1021.
Navarro-Gonzalez, R., Navarro, K.F., de la Rosa, J., Iniguez, E., Molina, P., Miranda, L.D., Morales, P., Cienfuegos, E., Coll, P., Raulin, F., Amils, R., and McKay, C.P. (2006) The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results. Proc Natl Acad Sci USA 103: 16089-16094.
Navarro-Gonzalez, R., Iniguez, E., de la Rosa, J., and McKay, C.P. (2009) Characterization of organics, microorganisms, desert soils, and Mars-like soils by thermal volatilization coupled to mass spectrometry and their implications for the search for organics on Mars by Phoenix and future space missions. Astrobiology 9(8):703-715.
Ojha, L., Wilhelm, M.B., Murchie, S.L., McEwen, A.S., Wray, J.J., Hanley, J., Masse, M., and Chojnacki, M. (2015) Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat Geosci 8:829-832.
Pasteris, J.D. and Wopenka, B. (2003) Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology 3:727-738.
Pecharsky, V.K. and Zavalij, P.Y. (2009) Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd ed., Springer, New York.
Perry, R.S. and Kolb, V.M. (2004) Biological and organic constituents of desert varnish: review and new hypotheses. Proc SPIE 5163:202-217.
Perry, R.S., Engel, M.H., Botta, O., and Staley, J.T. (2003) Amino acid analyses of desert varnish from the Sonoran and Mojave Deserts. Geomicrobiol J 20:427-438.
Perry, R.S., Lynne, B.Y., Sephton, M.A., Kolb, V.M., Perry, C.C., and Staley, J.T. (2006) Baking black opal in the desert sun: the importance of silica in desert varnish. Geology 34:537-540.
Potter, R.M. and Rossman, G.R. (1979) The manganese-and iron-oxide mineralogy of desert varnish. Chem Geol 25: 79-94.
Roden, E.E. and Zachara, J.M. (1996) Microbial reduction of crystalline iron (III) oxides: influence of oxide surface area and potential for cell growth. Environ Sci Technol 30:1618-1628.
Rothery, D.A., Gilmour, I., and Sephton, M.A. (2011) An Introduction to Astrobiology, 2nd ed., edited by Cambridge University Press, Cambridge, UK.
Rull, F., Sansano, A., Diaz, E., Canora, C.P., Moral, A.G., Tato, C., Colombo, M., Belenguer, T., Fernandez, M., and Manfredi, J.A.R. (2011) ExoMars Raman Laser Spectrometer for ExoMars. Proc SPIE 8152, doi:10.1117/12.896787.
Sadooni, F.N., Howari, F., Edwards, H.G.M., and El-Saiy, A. (2010) Lithology, mineral assemblages and microbial fingerprints of the evaporite-carbonate sediments of the coastal sabkha of Abu Dhabi and their extraterrestrial implications. International Journal of Astrobiology 9: 147-156.
Saiz-Jimenez, C. (1994) Production of alkylbenzenes and alkylnaphthalenes upon pyrolysis of unsaturated fatty acids. Naturwissenschaften 81:451-453.
Saiz-Jimenez, C. and De Leeuw, J.W. (1986) Chemical characterization of soil organic matter fractions by analytical pyrolysis-gas chromatography-mass spectrometry. J Anal Appl Pyrol 9(2):99-119.
Schelble, R.T., McDonald, G.D., Hall, J.A., and Nealson, K.H. (2005) Community structure comparison using FAME analysis of desert varnish and soil, Mojave Desert, California. Geomicrobiol J 22:353-360.
Schulte, W., Viscor, T., Manhart, M., Hofmann, P., Baglioni, P., and Gmbh, K. (2010) Design and testing of the ExoMars Sample Preparation and Distribution System. In i-SAIRAS 2010, August 29-September 1, 2010, Sapporo, Japan, pp 7-14.
Schulze-Makuch, D. and Irwin, L.N. (2008) Life in the Universe, Springer, Berlin.
Seiter, K., Hensen, C., Schroter, J., and Zabel, M. (2004) Organic carbon content in surface sediments-defining regional provinces. Deep Sea Res Part 1 Oceanogr Res Pap 51:2001-2026.
Stalport, F., Glavin, D.P., Eigenbrode, J.L., Bish, D., Blake, D., Coll, P., Szopa, C., Buch, A., McAdam, A., Dworkin, J.P., and Mahaffy, P.R. (2012) The influence of mineralogy on recovering organic acids from Mars analogue materials using the one-pot derivatization experiment on the Sample Analysis at Mars (SAM) instrument suite. Planet Space Sci 67:1-13.
Vancampenhout, K., Wouters, K., Caus, A., Buurman, P., Swennen, R., and Deckers, J. (2008) Fingerprinting of soil organic matter as a proxy for assessing climate and vegetation changes in last interglacial palaeosols (Veldwezelt, Belgium). Quat Res 69:145-162.
Vandenabeele, P., Edwards, H.G.M., and Jehlička, J. (2014) The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem Soc Rev 43,doi:10.1039/c3cs60263j.
Vidal, A., Remusat, L., Watteau, F., Derenne, S., and Quenea, K. (2016) Incorporation of 13C labelled shoot residues in Lumbricus terrestris casts: a combination of transmission electron microscopy and nanoscale secondary ion mass spectrometry. Soil Biol Biochem 93:8-16.
Vitek, P., Jehlička, J., Edwards, H.G.M., Hutchinson, I., Ascaso, C., and Wierzchos, J. (2014) Miniaturized Raman instrumentation detects carotenoids in Mars-analogue rocks from the Mojave and Atacama Deserts. Philos Trans A Math Phys Eng Sci 372, doi:10.1098/rsta.2014.0196.
Withnall, R., Chowdhry, B.Z., Silver, J., Edwards, H.G.M., and De Oliveira, L.F.C. (2003) Raman spectra of carotenoids in natural products. Spectrochim Acta A Mol Biomol Spectrosc 59:2207-2212.
Yoshioka, T., Handa, T., Grause, G., Lei, Z., Inomata, H., and Mizoguchi, T. (2005) Effects of metal oxides on the pyrolysis of poly(ethylene terephthalate). J Anal Appl Pyrolysis 73: 139-144.