Kramer, A.; and Kwee, W.H. (1977). Functional and nutritional properties of tomato protein concentrates. Journal of Food Science, 42(1), 207-211
Khazaei, J.; Chegini, G.R.; and Bakhshiani, M. (2008). A Novel Alternative Method for Modelling the Effects of Air Temperature and Slice Thickness on Quality and Drying Kinetics of Tomato Slices: Superposition Technique. Drying Technology, 26(6), 759-775.
Xanthopoulos, G.; Yanniotis, S.; and Talaiporou, E. (2012). Influence of Salting on Drying Kinetics and Water Diffusivity of Tomato Halves. International Journal of Food Properties, 15(4), 847-863.
Movagharnejad, K.; and Nikzad M. (2007). Modeling of tomato drying using artificial neural network. Computers and Electronics in Agriculture, 59(1-2), 78-85.
Heredia, A.; and Andres, A. (2008). Mathematical Equations to Predict Mass Fluxes and Compositional Changes During Osmotic Dehydration of Cherry Tomato Halves. Drying Technology, 26(7), 873-883.
Di Matteo, M.; Cinquanta, L.; Galiero, G.; and Crescitelli, S. (2003). A mathematical model of mass transfer in spherical geometry: plum (Prunus domestica) drying. Journal of Food Engineering, 58(2), 183-192.
Barati, E.; and Esfahani, J.A. (2011). Mathematical modeling of convective drying: Lumped temperature and spatially distributed moisture in slab. Energy, 36(4), 2294-2301.
Lemus, R.A.; Perez, M.; Andres, A.; Roco, T.; Tello, C.M.; and Vega, A. (2008). Kinetic study of dehydration and desorption isotherms of red alga Gracilaria. LWT-Food Science and Technology, 41(9), 1592-1599.
Tour, R.K.; and Savage, G.P. (2006). Effect of semi-drying on the antioxidant component of tomatoes. Food Chemistry, 94(1), 90-97.
Heredia, A.; Barrera, C.; and Andres, A. (2007). Drying of cherry tomato by a combination of different dehydration techniques. Comparison of kinetics and other related properties. Journal of Food Engineering, 80(1), 111-118.
Zanoni, B.; Pagliarini, E.; and Foschino, R. (2000). Study of the stability of dried tomato halves during shelf-life to minimize oxidative damage. Journal of the Science of Food and Agriculture, 80(15), 2203-2208.
Xanthopoulos, G.; Yanniotis, S.; and Boudouvis, A.G. (2012). Numerical Simulation of Variable Water Diffusivity during Drying of Peeled and Unpeeled Tomato. Journal of Food Science, 77(10), E287-E296.
Xanthopoulos, G.; Yanniotis, S.; and Lambrinos, G. (2010). Study of the drying behaviour in peeled and unpeeled whole figs. Journal of Food Engineering, 97(3), 419-424.
Szentmarjay, T.; Pallai, E.; and Regenyi, Zs. (1996). Short-Time Drying of Beatsensitwe, Biologically Active Pulps and Pastes. Drying Technology, 14(9), 2091-2115.
Karatas, S.; and Esin, A. (1994). Determination of moisture diffusivity and behavior of tomato concentrate droplets during drying in air. Drying Technology, 12(4), 799-822.
Gaware, T.J.; Sutar, N.; and Thorat, B.N. (2010). Drying of Tomato Using Different Methods: Comparison of Dehydration and Rehydration Kinetics. Drying Technology, 28(5), 651-658.
Doymaz, I. (2007). Air-drying characteristics of tomatoes. Journal of Food Engineering, 78(4), 1291-1297.
Leonard, A.; Blacher, S.; Marchot, P.; and Crine, M. (2002). Use of X-ray microtomo graphy to follow the convective heat drying of wastewater sludges. Drying Technology, 20(4-5), 1053-1069.
Escalona, I.; Jomaa, W.; Olivera-Fuentes, C.; Crine, M.; and Leonard, A. (2010). Convective drying of gels: Comparison between simulated and experimental moisture profiles obtained by X-ray microtomography. Drying Technology, 28(5), 644-650.
Zhu, A.; and Jiang, F. (2014). Modeling of mass transfer performance of hotair drying of sweet potato (Ipomoea batatas L.) slices. Chemical Industry & Chemical Engineering Quarterly, 20(2), 171-181.
Bennamoun, L.; Fraikin, L.; Salmon, T.; Crine, M.; and Leonard, A. (2013). Modeling of wastewater sludge drying with determination of moisture diffusivity. Journal of Residuals Science & Technology, 10(4), 165-170.
Bennamoun, L.; Crine, M.; and Leonard, A. (2013). Convective Drying of Wastewater Sludge: Introduction of Shrinkage Effect in Mathematical Modeling. Drying Technology, 31(6), 643-654.
Bennamoun, L.; Kahlerras, L.; Michel, F.; Courard, L.; Salmon, T.; Fraikin, L.; Belhamri, A.; and Leonard, A. (2013). Determination of Moisture Diffusivity during Drying of Mortar Cement: Experimental and Modeling Study. International Journal of Energy Engineering, 3(1), 1-6.
Azzouz, S.; Guizani, A.; Jomaa, W.; and Belghith, A. (2002). Moisture diffusivity and drying kinetic equation of convective drying of grapes. Journal of Food Engineering, 55(4), 323-330.
Wang, L.; Gao, Z.; Xiao, H.; Lin, H.; and Yao, X. (2011). Air impingement drying kinetics of cherry tomato. Journal of Jiangsu University (Natural Science Edition), 32(5), 540-544.
Aktas, M.; Ceylan, Đl.; and Yilmaz, S. (2009). Determination of drying characteristics of apples in a heat pump and solar dryer. Desalination, 239(1-3), 266-275.
Giovanelli, G.; Zanoni, B.; Lavelli, V.; and Nani, R. (2002). Water sorption, drying and antioxidant properties of dried tomato products. Journal of Food Engineering, 52(2), 135-141.
Crank, J. (1975). The Mathematics of Diffusion (2nd Ed). Oxford, UK: Clarendon Press.
Akanbi, C.T.; Adeyemi, R.S.; and Ojo, A. (2006). Drying characteristics and sorption isotherm of tomato slices. Journal of Food Engineering, 73(2), 157-163.