[1] Rey-Raap, N., Menéndez, J.A., Arenillas, A., RF xerogels with tailored porosity over the entire nanoscale. Microporous Mesoporous Mater. 195 (2014), 266–275.
[2] Rey-Raap, N., Menéndez, J.A., Arenillas, A., Simultaneous adjustment of the main chemical variables to fine-tune the porosity of carbon xerogels. Carbon 78 (2014), 490–499.
[3] Elkhatat, A.M., Al-Muhtaseb, S.A., Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 23 (2011), 2887–2903.
[4] Piedboeuf, M.-L., Deschamps, F.L., Léonard, A.F., Job, N., Carbon xerogels as model materials: towards a relationship between pore texture and electrochemical behavior as anodes for lithium-ion batteries. J. Mater. Sci., 2016.
[5] Calvo, E.G., Lufrano, F., Staiti, P., Brigandì, A., Arenillas, A., Menéndez, J.A., Optimizing the electrochemical performance of aqueous symmetric supercapacitors based on an activated carbon xerogel. J. Power Sources, 2013.
[6] Calvo, E.G., Rey-Raap, N., Arenillas, A., Menéndez, J.A., The effect of the carbon surface chemistry and electrolyte pH on the energy storage of supercapacitors. RSC Adv., 4, 2014, 32398.
[7] Collins, J., Gourdin, G., Foster, M., Qu, D., Carbon surface functionalities and SEI formation during Li intercalation. Carbon 92 (2015), 193–244.
[8] Wang, K.-X., Li, X.-H., Chen, J.-S., Surface and interface engineering of electrode materials for lithium-ion batteries. Adv. Mater. 27 (2015), 527–545.
[9] Lee, K.T., Lytle, J.C., Ergang, N.S., Oh, S.M., Stein, A., Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv. Funct. Mater. 15 (2005), 547–556.
[10] Sung, M.G., Hattori, K., Asai, S., Crystal alignment of graphite as a negative electrode material of the lithium-ion secondary batteries. Mater. Des. 30 (2009), 387–390.
[11] Roberts, A.D., Li, X., Zhang, H., Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43 (2014), 4341–4356.
[12] Wood Iii, D.L., Li, J., Daniel, C., Prospects for reducing the processing cost of lithium ion batteries. J. Power Sources 275 (2015), 234–242.
[13] Béguin, F., Chevallier, F., Vix-Guterl, C., Saadallah, S., Bertagna, V., Rouzaud, J.N., Frackowiak, E., Correlation of the irreversible lithium capacity with the active surface area of modified carbons. Carbon 43 (2005), 2160–2167.
[14] Kakunuri, M., Vennamalla, S., Sharma, C.S., Synthesis of carbon xerogel nanoparticles by inverse emulsion polymerization of resorcinol-formaldehyde and their use as anode materials for lithium-ion battery. RSC Adv. 5 (2015), 4747–4753.
[15] Korsunsky, A.M., Sui, T., Song, B., Explicit formulae for the internal stress in spherical particles of active material within lithium ion battery cathodes during charging and discharging. Mater. Des. 69 (2015), 247–252.
[16] Pan, A., Liu, D., Zhou, X., Garcia, B.B., Liang, S., Liu, J., Cao, G., Enhanced lithium-ion intercalation properties of coherent hydrous vanadium pentoxide-carbon cryogel nanocomposites. J. Power Sources 195 (2010), 3893–3899.
[17] Sun, S., Matei Ghimbeu, C., Janot, R., Le Meins, J.-M., Cassel, A., Davoisne, C., Masquelier, C., Vix-Guterl, C., One-pot synthesis of LiFePO4–carbon mesoporous composites for Li-ion batteries. Microporous Mesoporous Mater. 198 (2014), 175–184.
[18] Yoon, S., Lee, S., Kim, S., Park, K.-W., Cho, D., Jeong, Y., Carbon nanotube film anodes for flexible lithium ion batteries. J. Power Sources 279 (2015), 495–501.
[19] Dahn, J.R., Zheng, T., Liu, Y., Xue, J.S., Mechanisms for lithium insertion in carbonaceous materials. Science 270 (1995), 590–593.
[20] Alcántara, R., Ortiz, G.F., Lavela, P., Tirado, J.L., Stoyanova, R., Zhecheva, E., EPR, NMR, and electrochemical studies of surface-modified carbon microbeads. Chem. Mater. 18 (2006), 2293–2301.
[22] Zhu, Y., Xiang, X., Liu, E., Wu, Y., Xie, H., Wu, Z., Tian, Y., An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode. Mater. Res. Bull. 47 (2012), 2045–2050.
[23] Liu, N.P., Shen, J., Guan, D.Y., Liu, D., Zhou, X.W., Li, Y.J., Effect of carbon aerogel activation on electrode lithium insertion performance. Wuli Huaxue Xuebao Acta Phys. Chim. Sin. 29 (2013), 966–972.
[24] Job, N., Pirard, R., Marien, J., Pirard, J.P., Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon 42 (2004), 619–628.
[25] Yang, X., Huang, H., Zhang, G., Li, X., Wu, D., Fu, R., Carbon aerogel with 3-D continuous skeleton and mesopore structure for lithium-ion batteries application. Mater. Chem. Phys. 149–150 (2015), 657–662.
[26] Li, J., Armstrong, B.L., Daniel, C., Kiggans, J., Wood Iii, D.L., Optimization of multicomponent aqueous suspensions of lithium iron phosphate (LiFePO4) nanoparticles and carbon black for lithium-ion battery cathodes. J. Colloid Interface Sci. 405 (2013), 118–124.
[27] Liu, X., Li, S., Mei, J., Lau, W.M., Mi, R., Li, Y., Liu, H., Liu, L., From melamine-resorcinol-formaldehyde to nitrogen-doped carbon xerogels with micro- and meso-pores for lithium batteries. J. Mater. Chem. A 2 (2014), 14429–14438.
[28] Léonard, A.F., Gommes, C.J., Piedboeuf, M.-L., Pirard, J.-P., Job, N., Rapid aqueous synthesis of ordered mesoporous carbons: investigation of synthesis variables and application as anode materials for Li-ion batteries. Microporous Mesoporous Mater. 195 (2014), 92–101.
[29] Zhang, B., Hao, S., Xiao, D., Wu, J., Huang, Y., Templated formation of porous Mn2O3 octahedra from Mn-MIL-100 for lithium-ion battery anode materials. Mater. Des. 98 (2016), 319–323.
[30] Nair, V.S., Sreejith, S., Joshi, H., Zhao, Y., West, A., Madhavi, S., The fabrication of LiMn2O4 and Na1.16V3O8 based full cell aqueous rechargeable battery to power portable wearable electronics devices. Mater. Des. 93 (2016), 291–296.
[31] Porcher, W., Lestriez, B., Jouanneau, S., Guyomard, D., Optimizing the surfactant for the aqueous processing of LiFePO4 composite electrodes. J. Power Sources 195 (2010), 2835–2843.
[32] Bermúdez, J.M., Beneroso, D., Rey-Raap, N., Arenillas, A., Menéndez, J.A., Energy consumption estimation in the scaling-up of microwave heating processes. Chem. Eng. Process. 95 (2015), 1–8.
[33] Sing, K.S.W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem., 1985, 603.
[34] Lecloux, A., Pirard, J.P., The importance of standard isotherms in the analysis of adsorption isotherms for determining the porous texture of solids. J. Colloid Interface Sci. 70 (1979), 265–281.
[35] Dubinin, M.M., Fundamentals of the theory of adsorption in micropores of carbon adsorbents: characteristics of their adsorption properties and microporous structures. Carbon 27 (1989), 457–467.