Doped aqueous TiO2; photocatalysis; up-scaled synthesis; p-nitrophenol degradation; sol-gel process
Abstract :
[en] In this paper, an easy aqueous sol-gel synthesis developed previously by Mahy et al. [J. Sol-Gel Sci. Technol. (2016)] is adapted to produce highly active TiO2 catalysts doped with Fe3+, Ag+, Cu2+, Zn2+, Cr3+, Al3+, Mn2+, and Co2+ ions and Pt metallic nanoparticles. Samples are characterized by inductively coupled plasma–atomic emission spectroscopy (ICP-AES), X-ray diffraction (XRD), Mössbauer spectroscopy, transmission electron microscopy (TEM), nitrogen adsorption–desorption measurements and diffuse reflectance spectroscopy measurements. Results show that the samples are composed of anatase-brookite TiO2 nanoparticles with a spherical shape and mean diameter of around 5-8 nm and a surface area of between about 150 - 250 m2 g-1. In each doped sample, the dopant is present in the form added during the synthesis, given that the sample has not undergone any particular treatment. Photoactivity tests show improvement in catalyst activity for Fe3+, Ag+, Cu2+, Zn2+, and Al3+ ion and Pt metallic nanoparticle dopants, while a decrease of activity is obtained for Cr3+, Mn2+ and Co2+ ion dopants. For some dopants, the activity of TiO2 doped with metallic ions and synthesized from the aqueous sol-gel process is equal or superior to the activity of the commercial photocatalyst Degussa P25. Some mechanisms are proposed to explain these modifications of activity with doping. Furthermore, cost comparison at laboratory scale showed that Zn and Cu nitrate salt dopings are clearly less expensive for a halogen light (UV/visible) or low energy light enhanced catalyst and may be considered for industrial applications. Using this method, a large scale Zn-doped TiO2 photocatalyst is synthesized with properties homologous to the lab-scale product. Results show that the aqueous sol-gel synthesis developed previously can be easily adapted for doping in order to produce an up-scalable synthesis.
Disciplines :
Materials science & engineering Chemical engineering
Author, co-author :
Mahy, Julien ; Université de Liège > Department of Chemical Engineering > Génie chimique - Procédés et développement durable
Lambert, Stéphanie ; Université de Liège > Department of Chemical Engineering > Department of Chemical Engineering
Léonard, Géraldine ; Université de Liège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces
Zubiaur, Anthony ; Université de Liège > Department of Chemical Engineering > Department of Chemical Engineering
Olu, Pierre-Yves
Mahmoud, Abdelfattah ; Université de Liège > Département de chimie (sciences) > LCIS - GreenMAT
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
[1] Mahy, J.G., Léonard, G.L.-M., Pirard, S., Wicky, D., Daniel, A., Archambeau, C., Heinrichs, B., J. Sol-Gel Sci. Technol., 2016, 10.1007/s10971-016-4020-5 (in press).
[2] Mills, A., Le Hunte, S., J. Photochem. Photobiol. A Chem. 108 (1997), 1–35.
[3] Di Paola, A., García-López, E., Marcì, G., Palmisano, L., J. Hazard. Mater. 211-212 (2012), 3–29.
[4] a. Rauf, M., Ashraf, S.S., Chem. Eng. J. 151 (2009), 10–18.
[5] Fujishima, A., Hashimoto, K., Watanabe, T., TiO2 Photocat. Fund. Appl., 1999.
[21] Leyva-Porras, C., Toxqui-Teran, A., Vega-Becerra, O., Miki-Yoshida, M., Rojas-Villalobos, M., García-Guaderrama, M., Aguilar-Martinez, J.A., J. Alloys Compd. 647 (2015), 627–636.
[22] Mahshid, S., Askari, M., Ghamsari, M.S., J. Mater. Process. Technol. 189 (2007), 296–300.
[23] Hore, S., Palomares, E., Smit, H., Bakker, N.J., Comte, P., Liska, P., Ravindranathan Thampi, K., Kroon, J.M., Hinsch, A., Durrant, J.R., J. Mater. Chem., 15, 2005, 412.
[24] Barbe, C.J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., Grätzel, M., 71, 1997, 3157–3171.
[25] Zang, L., Macyk, W., Lange, C., Maier, W.F., Antonius, C., Meissner, D., Kisch, H., Chem. A Eur. J. 6 (2000), 379–384.
[26] Zang, L., Lange, C., Abraham, I., Storck, S., Maier, W.F., Kisch, H., J. Phys. Chem. B. 102 (1998), 10765–10771.
[27] Di Paola, A., Marcì, G., Palmisano, L., Schiavello, M., Uosaki, K., Ikeda, S., Othani, B., J. Phys. Chem. B. 106 (2002), 637–645.
[29] Armelao, L., Barreca, D., Bottaro, G., Gasparotto, A., Maccato, C., Maragno, C., Tondello, E., Štangar, U.L., Bergant, M., Mahne, D., Nanotechnology, 18, 2007, 375709.
[30] Scuderi, V., Impellizzeri, G., Romano, L., Scuderi, M., Brundo, M.V., Bergum, K., Zimbone, M., Sanz, Massimo R., Buccheri, M.A., Simone, F., Nicotra, G., Svensson, B.G., Grimaldi, M.G., Privitera, V., Nanoscale 6 (2014), 11189–11195.
[31] Malengreaux, C., Modified TiO 2 – based photocatalytic films and powders produced by aqueous and non-Aqueous sol-Gel processes for water purification, chapter 5. Phd Thesis, 2013, Univ. Liège.
[32] Impellizzeri, G., Scuderi, V., Romano, L., Sberna, P.M., Arcadipane, E., Sanz, R., Scuderi, M., Nicotra, G., Bayle, M., Carles, R., Simone, F., Privitera, V., J. Appl. Phys., 116, 2014, 173507.
[33] Crisan, M., Dargan, N., Crisan, D., Ianculescu, A., Nitoi, I., Oancea, P., Todan, L., Stan, C., Stanica, N., Ceram. Int. 42 (2016), 3088–3095.
[34] Kaur, T., Sraw, A., Pal Toor, A., Wanchoo, R.K., Sol. Energy. 125 (2016), 65–76.
[35] Caratto, V., Locardi, F., Alberti, S., Villa, S., Sanguineti, E., Martinelli, A., Balbi, T., Canesi, L., Ferretti, M., J. Sol-Gel Sci. Technol., 2016, 10.1007/s10971-016-4057-5 (in press).
[36] Yamashita, H., Harada, M., Misaka, J., Takeuchi, M., Neppolian, B., Anpo, M., Catal. Today. 84 (2003), 191–196.
[37] Chatti, R., Rayalu, S.S., Dubey, N., Labhsetwar, N., Devotta, S., Sol. Energy Mater. Sol. Cells. 91 (2007), 180–190.
[38] Kerkez-Kuyumcu, Ö., Kibar, E., Dayıoglu, K., Gedik, F., Akın, A.N., Özkara-Aydınoglu, Ş., J. Photoch. Photobio. A 311 (2015), 176–185.
[39] Léonard, G.L.-M., Malengreaux, C.M., Mélotte, Q., Lambert, S.D., Bruneel, E., Van Driessche, I., Heinrichs, B., J. Environ. Chem. Eng. 4 (2016), 449–459.
[81] Guczi, L., Beck, A., Horváth, A., Koppány, Zs., Stefle, G., Frey, K., Sajó, I., Geszti, O., Bazin, D., Lynch, J., J. Mol. Catal. A Chem. 204-205 (2003), 545–552.
[82] Huang, J., Dai, W.L., Li, H., Fan, K., J. Catal. 252 (2007), 69–76.
[85] Guillén-Santiago, A., Mayén, S.A., Torres-Delgado, G., Castanedo-Pérez, R., Maldonado, A., de la, M., Olvera, L., Mater. Sci. Eng. B. 174 (2010), 84–87.
[86] Bodson, C.J., Heinrichs, B., Tasseroul, L., Bied, C., Mahy, J.G., Wong Chi Man, M., Lambert, S.D., J. Alloys Compd. 682 (2016), 144–153.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.