bacteria; eukaryotes; diversity; Antarctica; cyanobacteria; green algae
Abstract :
[en] The bacterial and microeukaryotic biodiversity were studied using pyrosequencing analysis on a 454 GS FLX+ platform
of partial SSU rRNA genes in terrestrial and aquatic habitats of the Sør Rondane Mountains, including soils, on mosses,
endolithic communities, cryoconite holes and supraglacial and subglacial meltwater lenses. This inventory was
complemented with Denaturing Gradient Gel Electrophoresis targeting Chlorophyta and Cyanobacteria. OTUs belonging to
the Rotifera, Chlorophyta, Tardigrada, Ciliophora, Cercozoa, Fungi, Bryophyta, Bacillariophyta, Collembola and Nematodawere present with a relative abundance of at least 0.1% in the eukaryotic communities. Cyanobacteria, Proteobacteria,
Bacteroidetes, Acidobacteria, FBP and Actinobacteria were the most abundant bacterial phyla. Multivariate analyses of the
pyrosequencing data revealed a general lack of differentiation of both eukaryotes and prokaryotes according to habitat type.
However, the bacterial community structure in the aquatic habitats was dominated by the filamentous cyanobacteria
Leptolyngbya and appeared to be significantly different compared with those in dry soils, on mosses, and in endolithic
habitats. A striking feature in all datasets was the detection of a relatively large amount of sequences new to science,
which underscores the need for additional biodiversity assessments in Antarctic inland locations.
Research Center/Unit :
CIP - Centre d'Ingénierie des Protéines - ULiège
Disciplines :
Environmental sciences & ecology Microbiology
Author, co-author :
Obbels, Dagmar
Verleyen, Elie
Mano, Marie-José
Namsaraev, Zorigto
Sweetlove, Maxime
Tytgat, Bjorn
FERNANDEZ CARAZO, Rafael ; Centre Hospitalier Universitaire de Liège - CHU > Unilab > Laboratoire génétique moléculaire
De Wever, Aaike
D'hondt, Sofie
Ertz, Damien
Elster, Josef
Sabbe, Koen
Willems, Anne
Wilmotte, Annick ; Université de Liège > Département des sciences de la vie > Physiologie et génétique bactériennes
Bacterial and eukaryotic biodiversity patterns in terrestrial and aquatic habitats in the 1 Sør Rondane Mountains, Dronning Maud Land, East Antarctica
Publication date :
2016
Journal title :
FEMS Microbiology Ecology
ISSN :
0168-6496
eISSN :
1574-6941
Publisher :
Blackwell Publishing, Oxford, United Kingdom
Volume :
92
Pages :
fiw041
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
BELDIVA
Funders :
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique F.R.S.-FNRS - Fonds de la Recherche Scientifique UGent - Universiteit Gent Fonds Inbev Baillet Latour
Adl SM, Simpson AGB, Lane CE et al. The revised classification of eukaryotes. J Eukaryot Microbiol 2012;59: 429-93.
Bakermans C, Skidmore ML, Douglas S et al. Molecular characterization of bacteria from permafrost of the Taylor Valley, Antarctica. FEMS Microbiol Ecol 2014;89: 331-46.
Barbosa A, Palacios MJ. Health of Antarctic birds: a review of their parasites, pathogens and diseases. Polar Biol 2009;32: 1095-115.
Bergstrom DM, Convey P, Huiskes AHL. Trends in Antarctic terrestrial and limnetic ecosystems, Antarctica as a Global indicator. Dordrecht, Springer Netherlands, 2006.
Block W. Cold or drought -the lesser of two evils for terrestrial arthropods? Eur J Entomol 1996;93: 325-39.
Boutte C, Grubisic S, Balthasart P et al. Testing of primers for the study of cyanobacterial molecular diversity by DGGE. J Microbiol Methods 2006;65: 542-50.
Brinkmann M, Pearce DA, Convey P et al. The cyanobacterial community of polygon soils at an inland Antarctic nunatak. Polar Biol 2007;30: 1505-11.
Broady PA. Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers Conserv 1996;5: 1307-35.
Cary SC, McDonald IR, Barrett JE et al. On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 2010;8: 129-38.
Cavalier-Smith T, Chao EEY. Phylogeny and megasystematics of phagotrophic heterokonts (kingdom Chromista). J Mol Evol 2006;62: 388-420.
CEE 2007. Final Comprehensive environmental evaluation report. Belgian Federal Science Policy 2007.
Chan YK, Van Nostrand JD, Zhou JZ et al. Functional ecology of an Antarctic Dry Valley. P Natl Acad Sci USA 2013;110: 8990-5.
Chong CW, Convey P, Pearce DA et al. Assessment of soil bacterial communities on Alexander Island (in the maritime and continental Antarctic transitional zone). Polar Biol 2012;35: 387-99.
Chong CW, Goh YS, Convey P et al. Spatial pattern in Antarctica: what can we learn from Antarctic bacterial isolates? Extremophiles 2013;17: 733-45.
Clarke A, Meredith MP, Wallace MI et al. Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica. Deep-Sea Res Pt II 2008;55: 1988-2006.
Cleenwerck I, Camu N, Engelbeen K et al. Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. Int J Syst Evol Micr 2007;57: 1647-52.
Cole JR, Wang Q, Fish JA et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014;42(Database issue): D633-42.
Convey P, Chown SL, Clarke A et al. The spatial structure of Antarctic biodiversity. Ecol Monogr 2014;84: 203-44.
Convey P, Gibson JAE, Hillenbrand CD et al. Antarctic terrestrial life-challenging the history of the frozen continent? Biol Rev 2008;83: 103-17.
Corinaldesi C, Danovaro R, Dell'Anno A. Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments. Appl Environ Microbiol 2005;71: 46-50.
Cowan EA, Christoffersen P, Powell RD. Sedimentological signature of a deformable bed preserved beneath an ice stream in a late pleistocene glacial sequence, Ross Sea, Antarctica. J Sediment Res 2012;82: 270-82.
de la Torre JR, Goebel BM, Friedmann EI et al. Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 2003;69: 3858-67.
De Wever A, Leliaert F, Verleyen E et al. Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existense of glacial refugia. P Roy Soc-Biol Sci 2009;276: 3591-9.
DeSantis TZ, Hugenholtz P, Larsen N et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006;72: 5069-72.
Díez B, Pedros-Alio C, Marsh TL et al. Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 2001;67: 2942-51.
Edgar RC, Haas BJ, Clemente JC et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, DOI: 10.1093/bioinformatics/btr381.
Edwards U, Rogall T, Blöcker H et al. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989;17: 9.
Ertz D, Aptroot A, Van de Vijver B et al. Lichens from the Utsteinen Nunatak (Sør Rondane Mountains, Antarctica), with the description of one new species and the establishment of permanent plots. Phytotaxa 2014;191: 99-114.
Fell JW, Scorzetti G, Connell L et al. Biodiversity of microeukaryotes in Antarctic Dry Valley soils with < 5% soil moisture. Soil Biol Biochem 2006;38: 3107-19.
Fernandez-Carazo R, Hodgson DA, Convey P et al. Low cyanobacterial diversity in biotopes of the Transantarctic Mountains and Shackleton Range (80-82 degrees S), Antarctica. FEMS Microbiol Ecol 2011;77: 503-17.
Fernandez-Carazo R, Namsaraev Z, Mano MJ et al. Cyanobacterial diversity for an anthropogenic impact assessment in the Sor Rondane Mountains area, Antarctica. Antarct Sci 2012;24: 229-42.
Fernandez-Valiente E, Camacho A, Rochera C et al. Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiol Ecol 2007;59: 377-85.
Freckman DW, Virginia RA. Low-diversity Antarctic soil nematode communities: Distribution and response to disturbance. Ecology 1997;78: 363-9.
Friedmann EI, Kibler AP. Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microb Ecol 1980;6: 95-108.
Ganzert L, Lipski A, Hubberten HW et al. The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica. FEMS Microbiol Ecol 2011;76: 476-91.
Gorodetskaya IV, Van Lipzig NPM, Van den Broeke MR et al. Meteorological regimes and accumulation patterns at Utsteinen, Dronning Maud Land, East Antarctica: analysis of two contrasting years. J Geophys Res-Atmos 2013;118: 1700-15.
Guillou L, Bachar D, Audic S et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res 2013;41: D597-604.
Guiry MD, Guiry GM. AlgaeBase. Galway: World-wide electronic publication, National University of Ireland, 2016, http: //www.algaebase.org (20 April 2016, date last accessed). Hodgson DA, Convey P, Verleyen E et al. The limnology and biology of the Dufek Massif, Transantarctic Mountains 82 degrees South. Polar Sci 2010;4: 197-214.
Hodgson DA, Noon PE, Vyverman W et al. Were the Larsemann Hills ice free through the Last Glacial Maximum? Antarct Sci 2001;13: 440-54.
Hodgson DA, Verleyen E, Squier AH et al. Interglacial environments of coastal east Antarctica: comparison of a Holocene (MIS 1) and an Eemian (MIS 5e) sediment record. Quat Sci Rev 2006;25: 179-97.
Jungblut AD, Lovejoy C, Vincent WF. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 2010;4: 191-202.
Jungblut AD, Wood SA, Hawes I et al. The Pyramid Trough Wetland: environmental and biological diversity in a newly created Antarctic protected area. FEMS Microbiol Ecol 2012;82: 356-66.
Kennedy AD. Water as a limiting factor in the Antarctic terrestrial environment-a biogeographical synthesis. Arct Alp Res 1993;25: 308-15.
Lee CK, Barbier BA, Bottos EM et al. The Inter-Valley Soil Comparative Survey: the ecology of Dry Valley edaphic microbial communities. ISME J 2012;6: 1046-57.
Mackintosh AN, Verleyen E, O'Brien PE et al. Retreat history of the East Antarctic ice sheet since the Last Glacial Maximum. Quat Sci Rev 2014;100: 10-30.
McKnight DM, Tate CM, Andrews ED et al. Reactivation of a cryptobiotic stream ecosystem in the McMurdo Dry Valleys, Antarctica: A long-term geomorphological experiment. Geomorphology 2007;89: 186-204.
Moniz MBJ, Rindi F, Novis PM et al. Molecular phylogeny of Antarctic Prasiola (Prasiolales, Trebouxiophyceae) reveals extensive cryptic diversity. J Phycol 2012;48: 940-55.
Nakai R, Abe T, Baba T et al. Eukaryotic phylotypes in aquatic moss pillars inhabiting a freshwater lake in East Antarctica, based on 18S rRNA gene analysis. Polar Biol 2012;35: 1495-504.
Namsaraev Z, Mano MJ, Fernandez R et al. Biogeography of terrestrial cyanobacteria from Antarctic ice-free areas. Ann Glaciol 2010;51: 171-7.
Niederberger TD, Sohm JA, Gunderson TE et al. Microbial community composition of transiently wetted Antarctic Dry Valley soils. Front Microbiol 2015;6: 9, DOI: 10.3389/fmicb.2015.00009.
Niederberger TD, Sohm JA, Tirindelli J et al. Diverse and highly active diazotrophic assemblages inhabit ephemerally wetted soils of the Antarctic Dry Valleys. FEMS Microbiol Ecol 2012;82: 376-90.
Oksanen J, Blanchet FG, Kindt R et al. Vegan: Community Ecology Package. R package version 2.2-1. 2015, http://CRAN.R-project.org/package=vegan (3 March 2016, date last accessed).
Ovstedal DO, Smith RJL. Further additions to the lichen flora of Antarctica and South Georgia. Nova Hedwigia 2009;88: 157-68.
Pattyn F, Matsuoka K, Berte J. Glacio-meteorological conditions in the vicinity of the Belgian Princess Elisabeth Station, Antarctica. Antarct Sci 2009;7.
Pawlowski J, Audic S, Adl S et al. CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol 2012;10: e1001419.
Peeters K, Ertz D, Willems A. Culturable bacterial diversity at the Princess Elisabeth Station (Utsteinen, Sor Rondane Mountains, East Antarctica) harbours many new taxa. Syst Appl Microbiol 2011;34: 360-7.
Pointing SB, Chan Y, Lacap DC et al. Highly specialized microbial diversity in hyper-arid polar desert. P Natl Acad Sci USA 2009;106: 19964-9.
Quince C, Lanzen A, Curtis TP et al. Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 2009;6: 639-41.
Saitou N, Nei M. The Neighbor-Joining Method - a New Method for Reconstructing Phylogenetic Trees. Mol Biol Evol 1987;4: 406-25.
Schloss PD, Westcott SL, Ryabin T et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl Environ Microbiol 2009;75: 7537-41.
Stanish LF, Bagshaw EA, McKnight DM et al. Environmental factors influencing diatom communities in Antarctic cryoconite holes. Environ Res Lett 2013;8: 045006.
Stoeck T, Bass D, Nebel M et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 2010;19: 21-31.
Stomeo F, Makhalanyane TP, Valverde A et al. Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiol Ecol 2012;82: 326-40.
Strunecky O, Komarek J, Johansen J et al. Molecular and morphological criteria for revision of the Genus Microcoleus (Oscillatoriales, Cyanobacteria). J Phycol 2013;49: 1167-80.
Terauds A, Chown SL, Morgan F et al. Conservation biogeography of the Antarctic. Divers Distrib 2012;18: 726-41.
Thomas DN, Fogg GE, Convey P et al. The biology of Polar Regions. Oxford: Oxford University Press, 2008.
Thüs H, Muggia L, Pérez-Ortega S et al. Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). Eur J Phycol 2011;46: 4399-415
Tschermak-Woess E, Hua M, Gartner G et al. Observations in Hemichloris antarctica Tschermak-Woess, Friedmann (Chlorophyceae) and the occurrence of a second Hemichloris species, Hemichloris polyspora n. sp. Plant Systematics and Evolution 2006;258: 27-37.
Tytgat B, Verleyen E, Obbels D et al. Bacterial diversity assessment in antarctic terrestrial and aquatic microbial mats: a comparison between bidirectional pyrosequencing and cultivation. PLoS One 2014;9: e97564.
Van de Peer Y, Dewachter R. Treecon for Windows - a Software Package for the Construction and Drawing of Evolutionary Trees for the Microsoft Windows Environment. Comput Appl Biosci 1994;10: 569-70.
Velasco-Castrillon A, Gibson JAE, Stevens MI. A review of current Antarctic limno-terrestrial microfauna. Polar Biol 2014;37: 1517-31.
Verleyen E, Sabbe K, Hodgson DA et al. Structuring effects of climate-related environmental factors on Antarctic microbial mat communities. Aquat Microb Ecol 2010;59: 11-24.
Vincent WF. Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 2000;12: 374-85.
Vyverman W, Verleyen E, Wilmote A et al. Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci 2010;4: 103-13.
Wang Q, Garrity GM, Tiedje JM et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007;73: 5261-7.
Whitaker D, Christman M. Clustsig: Significant Cluster Analysis. R package version 1.1. 2014, http://CRAN.R-project.org/package=clustsig (3 March 2016, date last accessed).
Yergeau E, Newsham KK, Pearce DA et al. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 2007;9: 2670-82.
Zeglin LH, Dahm CN, Barrett JE et al. Bacterial community structure along moisture gradients in the parafluvial sediments of two ephemeral desert streams. Microb Ecol 2011;61: 543-56.
Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol 1996;62: 316-22.
Zhu F, Massana R, Not F et al. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 2005;52: 79-92.
Zwart G, Hiorns WD, Methe BA et al. Nearly identical 16S rRNA sequences recovered from lakes in North America and Europe indicate the existence of clades of globally distributed freshwater bacteria. Syst Appl Microbiol 1998;21: 546-56.