Nagaraja, M. P. & Risin, D. The current state of bone loss research: data from spaceflight and microgravity simulators. J. Cell Biochem. 114, 1001–1008 (2013).
Morgan, J. L. et al. Sex-specific responses of bone metabolism and renal stone risk during bed rest. Physiol. Rep. 2; e12119; doi:10.14814/phy2.12119 (2014).
Horn, E., van Loon JJWA, Aceto, J., Muller, M. Life Sciences: Animal Physiology Laboratory Science with Space Data, (eds). Beysens D., Carotenuto L., van Loon J. J. W. A. & Zell M. ISBN 978-3-642-21143-0, Springer, Verlag Berlin Heidelberg 2011. 2011: 123–9.
Muller, M. et al. Small fish species as powerful model systems to study vertebrate physiology in space. J. Gravit. Physiol. 15, 253–254 (2008).
Rahmann, H. & Anken, R. H. Gravity related research with fishes—Perspectives in regard to the upcoming International Space Station, ISS. Space Life Sci. 30, 697–710 (2002).
Slenzka, K., Appel, R. & Rahmann, H. Development and altered gravity dependent changes in glucose-6-phosphate dehydrogenase activity in the brain of the cichlid fish Oreochromis mossambicus. Neurochem. Int. 26, 579–585 (1995).
Brungs, S., Hauslage, J., Hilbig, R., Hemmersbach, R. & Anken, R. Effects of simulated weightlessness on fish otolith growth: clinostat versus rotating-wall vessel. Adv Space Res 48, 792–798 (2011).
Aceto, J. et al. Microgravity simulation comparison at genome level in Danio rerio and role of Sox4 transcription factors in cranial skeleton development. J. Gravit. Physiol. 16, 103–104 (2009).
Aceto, J. et al. Zebrafish bone and general physiology are differently affected by hormones or changes in gravity. PLoS ONE 10, e0126928 (2015).
Henning, P. C., Park, B. S. & Kim, J. S. Physiological decrements during sustained military operational stress. Military Med. 176, 991–997 (2011).
Feng, X. & McDonald, J. M. Disorders of bone remodeling. Annu. Rev. Pathol. 6, 121–145 (2011).
Santamaria, N. et al. Fin spine bone resorption in atlantic bluefin tuna, Thunnus thynnus, and comparison between wild and captive-reared specimens. PLoS ONE 10, e0121924 (2015).
Weinstein, R. S. Glucocorticoid-induced osteoporosis and osteonecrosis. Endocrinol. Metab. Clin. North Am. 41, 595–611 (2012).
Westerfield, M. The Zebrafish Book: a Guide for the Laboratory Use of Zebrafish (Danio rerio) 5th edn, Eugene, University of Oregon Press, 2007.
Alsop, D. & Vijayan, M. M. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R711–R719 (2008).
Alderman, S. L. & Bernier, N. J. Ontogeny of the corticotropin-releasing factor system in zebrafish. Gen. Comp. Endocrinol. 164, 61–69 (2009).
Kageyama, R. & Ohtsuka, T. The Notch-Hes pathway in mammalian neural development. Cell Res. 9, 179–188 (1999).
Windhausen, T., Squifflet, S., Renn, J. & Muller, M. BMP signaling regulates bone morphogenesis in zebrafish through promoting osteoblast function as assessed by their nitric oxide production. Molecules 20, 7586–7601 (2015).
Larbuisson, A., Dalcq, J., Martial, J. A. & Muller, M. Fgf receptors Fgfr1a and Fgfr2 control the function of pharyngeal endoderm in late cranial cartilage development. Differentiation 86, 192–206 (2013).
Dalcq, J. et al. Runx3, Egr1 and Sox9b form a regulatory cascade required to modulate BMP-signaling during cranial cartilage development in zebrafish. PLoS ONE 7, e50140 (2012).
Van Loon, J. J. et al. Decreased mineralization and increased calcium release in isolated fetal mouse long bones under near weightlessness. J. Bone Miner. Res. 10, 550–557 (1995).
Caillot-Augusseau, A. et al. Bone formation and resorption biological markers in cosmonauts during and after a 180-day space flight (Euromir 95). Clin. Chem. 44, 578–585 (1998).
Carmeliet, G., Vico, L. & Bouillon, R. Space flight: a challenge for normal bone homeostasis. Crit. Rev. Eukaryot. Gene Expr. 11, 131–144 (2001).
Sabatakos, G. et al. Doubly truncated FosB isoform (Delta2DeltaFosB) induces osteosclerosis in transgenic mice and modulates expression and phosphorylation of Smads in osteoblasts independent of intrinsic AP-1 activity. J. Bone Miner. Res. 23, 584–595 (2008).
Morey, E. R. & Baylink, D. J. Inhibition of bone formation during space flight. Science 201, 1138–1141 (1978).
Wronski, T. J., Morey-Holton, E. R., Doty, S. B., Maese, A. C. & Walsh, C. C. Histomorphometric analysis of rat skeleton following spaceflight. Am. J. Physiol. 252, R252–R255 (1987).
Vico, L. et al. Trabecular bone remodeling after seven days of weightlessness exposure (BIOCOSMOS 1667). Am. J. Physiol. 255, R243–R247 (1988).
Turner, R. T., Evans, G. L. & Wakley, G. K. Spaceflight results in depressed cancellous bone formation in rat humeri. Aviat. Space Environ. Med. 66, 770–774 (1995).
Tavella, S. et al. Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the International Space Station (ISS). PLoS ONE 7, e33179 (2012).
Wronski, T. J. & Morey, E. R. Recovery of the rat skeleton from the adverse effects of simulated weightlessness. Metab. Bone Dis. Relat. Res. 4, 347–352 (1983).
Caillot-Augusseau, A. et al. Space flight is associated with rapid decreases of undercarboxylated osteocalcin and increases of markers of bone resorption without changes in their circadian variation: observations in two cosmonauts. Clin. Chem. 46, 1136–1143 (2000).
Papa, S. et al. Gadd45 beta mediates the NF-kappa B suppression of JNK signalling by targeting MKK7/JNKK2. Nat. Cell Biol. 6, 146–153 (2004).
Lu, B., Ferrandino, A. F. & Flavell, R. A. Gadd45beta is important for perpetuating cognate and inflammatory signals in T cells. Nat. Immunol. 5, 38–44 (2004).
Hughes-Fulford, M., Rodenacker, K. & Jutting, U. Reduction of anabolic signals and alteration of osteoblast nuclear morphology in microgravity. J. Cell Biochem. 99, 435–449 (2006).
Sato, A. et al. Effects of microgravity on c-fos gene expression in osteoblast-like MC3T3-E1 cells. Adv. Space Res. 24, 807–813 (1999).
de Groot, R. P. et al. Microgravity decreases c-fos induction and serum response element activity. J. Cell Sci. 97, 33–38 (1990).
de Groot, R. P. et al. Nuclear responses to protein kinase C signal transduction are sensitive to gravity changes. Exp. Cell Res. 197, 87–90 (1991).
Zanotti, S. & Canalis, E. Notch regulation of bone development and remodeling and related skeletal disorders. Calcif. Tissue Int. 90, 69–75 (2012).
Hatakeyama, J. et al. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131, 5539–5550 (2004).
Karlsson, C. et al. Notch and HES5 are regulated during human cartilage differentiation. Cell Tissue Res. 327, 539–551 (2007).
Crosnier, C., Stamataki, D. & Lewis, J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat. Rev. Genet. 7, 349–359 (2006).
Wohrle, F. U., Daly, R. J. & Brummer, T. Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun. Signal. 7, 22 (2009).
Simister, P. C. & Feller, S. M. Order and disorder in large multi-site docking proteins of the Gab family--implications for signalling complex formation and inhibitor design strategies. Mol. Biosyst. 8, 33–46 (2012).
Yang-Yen, H. F. Mcl-1: a highly regulated cell death and survival controller. J. Biomed. Sci. 13, 201–204 (2006).
Wu, L. et al. The E2F1-3 transcription factors are essential for cellular proliferation. Nature 414, 457–462 (2001).
Denis, G. V., Vaziri, C., Guo, N. & Faller, D. V. RING3 kinase transactivates promoters of cell cycle regulatory genes through E2F. Cell Growth Differ. 11, 417–424 (2000).
Simpson, E. R. et al. Aromatase—a brief overview. Annu. Rev. Physiol. 64, 93–127 (2002).
Neutelings, T. et al. Skin physiology in microgravity: a 3-month stay aboard ISS induces dermal atrophy and affects cutaneous muscle and hair follicles cycling in mice. NPJ Microgravity 1; doi:10.1038/npjmgrav.2015.1032 (2015).
Pardo, S. J. et al. Simulated microgravity using the Random Positioning Machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts. Am. J. Physiol. Cell Physiol. 288, C1211–C1221 (2005).
Versari, S., Klein-Nulend, J., van Loon, J. & Bradamante, S. Influence of oxygen in the cultivation of human mesenchymal stem cells in simulated microgravity: an explorative study. Microgravity Sci. Technol. 25, 59–66 (2013).
Versari, S., Longinotti, G., Barenghi, L., Maier, J. A. & Bradamante, S. The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment. FASEB J. 27, 4466–4475 (2013).
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).
van Loon, J. J. W. A. et al. Microgravity research starts on the ground! Apparatuses for long-term ground based hypo-and hypergravity studies in Proceedings of the 2nd European Symposium on the Utilisation of the International Space Station, ESA SP-433, European Space Agency, Noordwijk, the Netherlands. 415–419 (1999).
Walker, M. B. & Kimmel, C. B. A two-color acid-free cartilage and bone stain for zebrafish larvae. Biotechnol. Histochem. 82, 23–28 (2007).
Pruvot, B., Curé, Y., Djiotsa, J., Voncken, A. & Muller, M. Developmental defects in zebrafish for classification of EGF pathway inhibitors. Toxicol. Appl. Pharmacol. 274, 339–349 (2014).
Marée, R. et al. A rich internet application for remote visualization and collaborative annotation of digital slide images in histology and cytology. Diagn. Pathol. 8, p S26–S29 (2013).
Quiroz, Y. et al. The HMG-Box transcription factor Sox4b is required for pituitary expression of gata2a and specification of thyrotrope and gonadotrope cells in zebrafish. Mol. Endocrinol. 26, 1014–1027 (2012).
Andreas, U. et al. Leunissen: Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research 35, W71–W74; doi:10.1093/nar/gkm306 (2007).