Aspergillus/isolation & purification; Air Pollution, Indoor; Public health; Real-time PCR; SYBR® green; Performance assessment
Abstract :
[en] Currently, contamination of indoor environment by fungi and molds is considered as a public health problem. The monitoring of indoor airborne fungal contamination is a common tool to help understanding the link between fungi in houses and respiratory problems. Classical analytical monitoring methods, based on cultivation and microscopic identification, depend on the growth of the fungi. Consequently, they are biased by difficulties to grow some species on certain culture media and under certain conditions or by noncultivable or dead fungi that can consequently not be identified. However, they could have an impact on human health as they might be allergenic. Since molecular methods do not require a culture step, they seem an excellent alternative for the monitoring of indoor fungal contaminations. As a case study, we developed a SYBR(R) green real-time PCR-based assay for the specific detection and identification of Aspergillus versicolor, which is frequently observed in indoor environment and known to be allergenic. The developed primers amplify a short region of the internal transcribed spacer 1 from the 18S ribosomal DNA complex. Subsequently, the performance of this quantitative polymerase chain reaction (qPCR) method was assessed using specific criteria, including an evaluation of the selectivity, PCR efficiency, dynamic range, and repeatability. The limit of detection was determined to be 1 or 2 copies of genomic DNA of A. versicolor. In order to demonstrate that this SYBR(R) green qPCR assay is a valuable alternative for monitoring indoor fungal contamination with A. versicolor, environmental samples collected in contaminated houses were analyzed and the results were compared to the ones obtained with the traditional methods.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Libert, X.; Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussels, Belgium
Chasseur, C.; Health and Environment, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussels, Belgium
Bladt, S.; Cellule Régionale d ’ Intervention en Pollution Intérieure (CRIPI), Brussels Environment (IBGE), Avenue du Port 86C/3000, 1000 Bruxelles, Belgium
Packeu, A.; Mycology and Aerobiology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussels, Belgium
Bureau, Fabrice ; Université de Liège > Département des sciences fonctionnelles (DSF) > GIGA-R : Biochimie et biologie moléculaire
Roosens, N. H.; Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussels, Belgium
De Keersmaecker, S. C. J.; Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussels, Belgium
Language :
English
Title :
Development and performance assessment of a qualitative SYBR(R) green real-time PCR assay for the detection of Aspergillus versicolor in indoor air.
AIHA (2011) Facts about mold. American Industrial Hygiene Association https://www.aiha.org/getinvolved/VolunteerGroups/Documents/BiosafetyVGFactsAbout%20MoldDecember2011.pdf. Accessed 15 Dec 2014
Ashktorab H, Cohen RJ (1992) Facile isolation of genomic DNA from filamentous fungi. Biotechniques 13:198–200
Barbau-Piednoir E, Bertrand S, Mahillon J, Roosens NH, Botteldoorn N (2013a) SYBR(R)Green qPCR Salmonella detection system allowing discrimination at the genus, species and subspecies levels. Appl Microbiol Biotechnol 97(22):9811–9824. doi:10.1007/s00253-013-5234-x
Barbau-Piednoir E, Botteldoorn N, Yde M, Mahillon J, Roosens NH (2013b) Development and validation of qualitative SYBR(R)Green real-time PCR for detection and discrimination of Listeria spp. and Listeria monocytogenes. Appl Microbiol Biotechnol 97(9):4021–4037. doi:10.1007/s00253-012-4477-2
Barbau-Piednoir E, Botteldoorn N, Mahillon J, Dierick K, Roosens NH (2015) Fast and discriminative CoSYPS detection system of viable Salmonella spp. and Listeria spp. in carcass swab samples. Int J Food Microbiol 192:103–110. doi:10.1016/j.ijfoodmicro.2014.09.018
Beguin H, Nolard N (1994) Mould biodiversity in homes. I. Air and surface analysis of 130 dwellings. Aerobiologia 10:157–166. doi:10.1007/BF02459231
Bellanger AP, Reboux G, Roussel S, Grenouillet F, Didier-Scherer E, Dalphin JC, Millon L (2009) Indoor fungal contamination of moisture-damaged and allergic patient housing analysed using real-time PCR. Lett Appl Microbiol 49:260–266. doi:10.1111/j.1472-765X.2009.02653.x
Benndorf D, Müller A, Bock K, Manuwald O, Herbarth O, von Bergen M (2008) Indentification of spore allergens from the indoor mould Aspergillus versicolor. Allergy 63:454–460. doi:10.1111/j.1398-9995.2007.01603.x
Black J, Dean T, Byfield G, Foarde K, Menetrez M (2013) Determining fungi rRNA copy number by PCR. JBT 24:1–7. doi:10.7171/jbt.13-2401-004
Broeders S, Huber I, Grohmann L, Berben G, Taverniers I, Mazzara M, Roosens NH, Morisset D (2014) Guidelines for validation of qualitative real-time PCR methods. Trends Food SciTech 37:115–126. doi:10.1016/j.tifs.2014.03.008
Chemidlin Prevost-Boure N, Christen R, Dequiedt S, Mougel C, Lelievre M, Jolivet C, Shahbazkia HR, Guillou L, Arrouays D, Ranjard L (2011) Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE 6, e24166. doi:10.1371/journal.pone.0024166
Corradi N, Croll D, Colard A, Kuhn G, Ehinger M, Sanders IR (2007) Gene copy number polymorphisms in an arbuscular mycorrhizal fungal population. Appl Environ Microbiol 73:366–369. doi:10.1128/AEM.01574-06
Costa C, Vidaud D, Olivi M, Bart-Delabesse E, Vidaud M, Bretagne S (2001) Development of two real-time quantitative TaqMan PCR assays to detect circulating Aspergillus fumigatus DNA in serum. J Microbiol Methods 44:263–269. doi:10.1016/S0167-7012(01)00212-3
de Ana SG, Torres-Rodriguez JM, Ramirez EA, Garcia SM, Belmonte-Soler J (2006) Seasonal distribution of Alternaria, Aspergillus, Cladosporium and Penicillium species isolated in homes of fungal allergic patients. J Investig Allergol Clin Immunol 16:357–363
Douwes J, Thorne P, Pearce N, Heederik D (2003) Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47:187–200. doi:10.1093/annhyg/meg032
European Network of GMO Laboratories (ENGL) (2008) Definition of Minimum Performance requirements for analyticals Methods of GMO testing. EUR - Scientific and Technical Research Reports, Luxembourg, Luxembourg. doi: 10.2788/65827
European network of GMO Laboratories (ENGL) (2015) Definition of minimum preformance requirements for analytical methods of GMO testing. EUR - Scientific and Technical Research Reports., Luxembourg, Luxembourg
Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi:10.1111/j.1365-294X.1993.tb00005.x
Haugland RA, Varma M, Wymer LJ, Vesper SJ (2004) Quantitative PCR analysis of selected Aspergillus, Penicillium and Paecilomyces species. Syst Appl Microbiol 27:198–210. doi:10.1078/072320204322881826
Herrera ML, Vallor AC, Gelfond JA, Patterson TF, Wickes BL (2009) Strain-dependent variation in 18S ribosomal DNA Copy numbers in Aspergillus fumigatus. JCM. doi:10.1128/JCM.02073-08
Hinrikson HP, Hurst SF, Lott TJ, Warnock DW (2005) Assessment of ribosomial large-subunit D1-D2 Internal transcribed spacer 1, and internal transcribed spacer 2 regions as targets for molecular identification of medically important Aspergillus species. JCM 43:2092–2103. doi:10.1128/JCM.43.5.2092-2103.2005
Horner WE, Helbling A, Salvaggio JE, Lehrer SB (1995) Fungal allergens. Clin Microbiol Rev 8:161–179
Iwen PC, Hinrichs SH, Rupp ME (2002) Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Med Mycol 40:87–109. doi:10.1080/mmy.40.1.87.109
Johnson GL, Bibby DF, Wong S, Agrawal SG, Bustin SA (2012) A MIQE-compliant real-time PCR assay for Aspergillus detection. PLoS ONE 7, e40022. doi:10.1371/journal.pone.0040022
Jones R, Recer GM, Hwang SA, Lin S (2011) Association between indoor mold and asthma among children in Buffalo, New York. Indoor Air 21:156–164. doi:10.1111/j.1600-0668.2010.00692.x
Jurjevic Z, Peterson SW, Horn BW (2012) Aspergillus section Versicolores: nine new species and multilocus DNA sequence based phylogeny. IMA Fungus 3:59–79. doi:10.5598/imafungus.2012.03.01.07
McCarthy JK, Didham RK, Brockerhoff EG, van Bysterveldt KA, Varsani A (2013) High-resolution DNA melt-curve analysis for cost-effective mass screening of pairwise species interactions. Mol Ecol Resour 13:908–917. doi:10.1111/1755-0998.12143
Meheust D, Le Cann CP, Reboux G, Millon L, Gangneux JP (2014) Indoor fungal contamination: health risks and measurement methods in hospitals, homes and workplaces. Crit Rev Microbiol 40:248–260. doi:10.3109/1040841X.2013.777687
Melkin T, Haugland RA, Reponen T, Varma M, Lummus Z, Bernstein D, Wymer LJ, Vesper SJ (2004) Quantitative PCR analysis of houses dust can reveal abnormal mold conditions. J Environ Monit 6:615–620. doi:10.1039/b400250d
Mendell MJ, Mirer AG, Cheung K, Tong M, Douwes J (2011) Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. Environ Health Perspect 119:748–756. doi:10.1289/ehp.1002410
Michealsen A, Pinzari F, Ripka K, Lubitz W, Piñar G (2006) Application of molecular techniques fors identification of fungal communities colonising paper materials. Int Biodeterior Biodegradation 58:133–141. doi:10.1016/j.ibiod.2006.06.019
Mohr PJ, Taylor BN, Newell DB (2008) CODATA recommended values of the fundamental physical constants: 2006. Rev Mod Phys 80:633. doi:10.1103/RevModPhys.84.1527
Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H (2008) Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform Online 4:193–201. doi:10.4137/EBO.S653
Nolard N, Chasseur C, Marlier M, and Lognay G (2004) Validation des méthodes microbiologiques et chimiques de contrôle des lieux de travail. http://www.belspo.be/belspo/organisation/publ/pub_ostc/PS/rPS19_fr.pdf. Accessed 15 Dec 2014.
Packeu A, Chasseur C, Bladt S, Detandt M (2012) The role of indoor pollution in the development and maintenance of chronic airway inflammation in children. B-ENT 8(Suppl 19):73–79
Pitkaranta M, Meklin T, Hyvarinen A, Nevalainen A, Paulin L, Auvinen P, Lignell U, Rintala H (2011) Molecular profiling of fungal communities in moisture damaged buildings before and after remediation - a comparison of culture-dependent and culture-independent methods. BMC Microbiol 11:235. doi:10.1186/1471-2180-11-235
Reboux G, Bellanger AP, Roussel S, Grenouillet F, Millon L (2010) Moulds in dwellings: health risks and involved species. Rev Mal Respir 27:169–179. doi:10.1016/j.rmr.2009.09.003
Roussel S, Reboux G, Naegele A, Martinez J, Vacheyrou M, Scherer E, Millon L (2013) Detecting and quantifying mites in domestic dust: a novel application for real-time PCR. Environ Int 55:20–24. doi:10.1016/j.envint.2013.02.002
Rutledge RG, Cote C (2003) Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res 31:e93
Sarachu M, Colet M (2005) wEMBOSS: a web interface for EMBOSS. Bioinformatics 21:540–541. doi:10.1093/bioinformatics/bti031
Schoch CL, Seifert KA, Huhndorf S, Robert V, Pouge JL, Levesque A, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS 109:6241–6246. doi:10.1073/pnas.1117018109
Seo S-C, Reponen T, Levin L, Brochelt T, Grinshpun SA (2008) Aerosolization of particulate (1-3)-β-d-glucan from moldy materials. Appl Environ Microbiol 74:585–593. doi:10.1128/AEM.01791-07
Timothy D, Betancourt D, Menetrez M (2004) A rapid DNA extraction method for PCR identification of fungal indoor air contaminants. J Microbiol Methods 56:431–434. doi:10.1016/j.mimet.2003.11.015
United States Environmental Protection Agency EPA (2014) Technology for mold identification and enumeration. http://www.epa.gov/nerlcwww/moldtech.htm#references. Accessed 15 Dec 2014.
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74. doi:10.1093/nar/gkm306
Van den Bulcke M, Lievens A, Barbau-Piednoir E, Mgongolo Mbella G, Roosens NH, Sneyers M, Leunda Casi A (2010) A theoretical introduction to "Combinatory SYBR®Green qPCR Screening", a matrix-based approach for the detection of materials derived from genetically modified plants. Anal Bioanal Chem 396:2113–2123. doi:10.1007/s00216-009-3286-7
Verhoeff AP, Burge HA (1997) Health risk assessment of fungi in home environments. Ann Allergy Asthma Immunol 78:544–556. doi:10.1016/S1081-1206(10)63214-0
Vesper SJ (2011) Traditional mould analysis compared to a DNA-based method of mould analysis. Crit Rev Microbiol 37:15–24. doi:10.3109/1040841X.2010.506177
Vesper SJ, Wymer L, Kennedy S, Grimsley LF (2013) Decreased pulmonary function measured in children exposed to high environmental relative moldiness index homes. Open Respir Med J 7:83–86. doi:10.2174/1874306401307010083;TORMJ-7-83
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand GH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, New York, pp 315–322
World Health Organization (2009) Building dampness and its effect on indoor exposure to biological and non-biological pollutants. In WHO guidelines for indoor air quality: dampness and mould. World Health Organization, Copenhagen, pp 8–30