A molecular approach for the rapid, selective and sensitive detection of Exophiala jeanselmei in environmental samples: development and performance assessment of a real-time PCR assay.
Libert, X.; Chasseur, C.; Packeu, A.et al.
2016 • In Applied Microbiology and Biotechnology, 100 (3), p. 1377-1392
Black yeast; Detection; Environment; Exophiala jeanselmei; Molecular method; Real-time PCR
Abstract :
[en] Exophiala jeanselmei is an opportunistic pathogenic black yeast growing in humid environments such as water reservoirs of air-conditioning systems. Because this fungal contaminant could be vaporized into the air and subsequently cause health problems, its monitoring is recommended. Currently, this monitoring is based on culture and microscopic identification which are complex, sometimes ambiguous and time-demanding, i.e., up to 21 days. Therefore, molecular, culture-independent methods could be more advantageous for the monitoring of E. jeanselmei. In this study, we developed a SYBR(R)green real-time PCR assay based on the internal transcribed spacer 2 from the 18S ribosomal DNA complex for the specific detection of E. jeanselmei. The selectivity (100 %), PCR efficiency (95.5 %), dynamic range and repeatability of this qPCR assay were subsequently evaluated. The limit of detection for this qPCR assay was determined to be 1 copy of genomic DNA of E. jeanselmei. Finally, water samples collected from cooling reservoirs were analyzed using this qPCR assay to deliver a proof of concept for the molecular detection of E. jeanselmei in environmental samples. The results obtained by molecular analysis were compared with those of classical methods (i.e., culture and microscopic identification) used in routine analysis and were 100 % matching. This comparison demonstrated that this SYBR(R)green qPCR assay can be used as a molecular alternative for monitoring and routine investigation of samples contaminated by E. jeanselmei, while eliminating the need for culturing and thereby considerably decreasing the required analysis time to 2 days.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Libert, X.; Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussels, Belgium
Chasseur, C.; Health and Environment, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussels, Belgium
Packeu, A.; Mycology and Aerobiology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussels, Belgium
Bureau, Fabrice ; Université de Liège > Département des sciences fonctionnelles (DSF) > GIGA-R : Biochimie et biologie moléculaire
Roosens, N. H.; Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussels, Belgium
De Keersmaecker, S. J. C.; Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050 Brussels, Belgium
Language :
English
Title :
A molecular approach for the rapid, selective and sensitive detection of Exophiala jeanselmei in environmental samples: development and performance assessment of a real-time PCR assay.
Al-gabr HM, Zheng T, Yu X (2014) Occurence and quantification of fungi and detection of mycotoxigenic fungi in drinking water in Xiamen City, China. Sci Total Environ 466(467):1103–1111. doi:10.1016/j.scitotenv.2012.12.060
Anaissie E, Stratton SL, Dignagi MC, Lee C-K, Summerbell RC, Rex JH, Monson TP, Walsh TJ (2003) Pathogenic molds (including Aspergillus species) in hospital water distribution systems: a 3-year prospective study and clinical implications for patients with hematologic malignancies. Blood 101(7):2542–2546. doi:10.1182/blood-2002-02-0530
Ashktorab H, Cohen RJ (1992) Facile isolation of genomic DNA from filamentous fungi. Biotechniques 13(2):198–200
Badali H, Chander J, Bayat M, Seyedmousavi S, Sidhu S, Rani H, Attri A, Handa U, Meis JF, De Hoog GS (2012) Multiple subcutaneous cysts due to Exophiala spinifera in an immunocompetent patient. Med Mycol 50(2):207–213. doi:10.3109/13693786.2011.603367
Barbau-Piednoir E, Botteldoorn N, Yde M, Mahillon J, Roosens NH (2013) Development and validation of qualitative SYBR(R)Green real-time PCR for detection and discrimination of Listeria spp. and Listeria monocytogenes. Appl Microbiol Biotechnol 97(9):4021–4037. doi:10.1007/s00253-012-4477-2
Black J, Dean T, Byfield G, Foarde K, Menetrez M (2013) Determining Fungi rRNA Copy Number by PCR. JBT 24(1):1–7
Blakely T, Salmond C (2002) Probabilistic record linkage and a method to calculate the positive predictive value. Int J Epidemiol 31:1246–1252. doi:10.1093/ije/31.6.1246
Broad Institute (2015) Genome index. Broad Institute. http://www.broadinstitute.org/annotation/genome/Black_Yeasts/GenomesIndex.html. Accessed 24 July 2015
Broeders S, Huber I, Grohmann L, Berben G, Taverniers I, Mazzara M, Roosens NH, Morisset D (2014) Guidelines for validation of quantitative real-time PCR methods. Trends Food Sci Tech 37115-126. doi:10.1016/j.tifs.2014.03.008
Broeders S, Papazova N, Van Den Bulke M, Roosens NH (2012) Development of a Molecular Platform for GMO Detection in Food and Feed on the Basis of “Combinatory qPCR” Technology. Intech. http://www.intechopen.com/books/polymerase-chain-reaction/development-of-a-molecular-platform-for-gmo-detection-in-food-and-feed-on-the-basis-of-combinatory-q. Accessed 06/11/2015
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley J, Vandesompele J, Wittwer CT (2009) The MIQE guildelines: minimum information for publication of quantitative real-time PCR experiment. Clin Chem 55(4):611–622. doi:10.1373/clinchem.2008.11279
Chemidlin Prevost-Boure N, Christen R, Dequiedt S, Mougel C, Lelievre M, Jolivet C, Shahbazkia HR, Guillou L, Arrouays D, Ranjard L (2011) Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE 6(9):e24166. doi:10.1371/journal.pone.0024166
Corradi N, Croll D, Colard A, Kuhn G, Ehinger M, Sanders IR (2007) Gene copy number polymorphisms in an arbuscular mycorrhizal fungal population. Appl Environ Microbiol 73(1):366–369
De Hoog GS, Vicente V, Caligiorne RB, Kantarcioglu S, Tintelnot K, Van Den Ende G, Haase G (2003) Species diversity and polymorphism in the Exophiala spinifera clade containing opportunistic black yeast-like fungi. J Clin Microbiol 41(10):4767–4778. doi:10.1128/JCM.41.10.4767-4778.2003
Dixon DM, Shadomy HJ, Shadomy S (1980) Dematiaceous fungal pathogens isolated from nature. Mycopathologia 70(3):153–161. doi:10.1007/BF00443026
European Network of GMO Laboratories (2011) Verification of analytical methods for GMO testing when implementing interlaboratory validated methods. Joint Research Centre, Luxembourg, Luxembourg
European Network of GMO Laboratories (2015) JCR technical report: Definition of minimum performance requirements for analytical methods of GMO testing. Joint Research Centre, Luxembourg, Luxembourg
Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2113-118. doi:10.1111/j.1365-294X.1993.tb00005.x/pdf
Haase G, Sonntag L, van de Peer Y, Uijthof JM, Podbielski A, Melzer-Krick B (1995) Phylogenetic analysis of ten black yeast species using nuclear small subunit rRNA gene sequences. A van Leeuw J Microb 68(1):19–33. doi:10.1007/BF00873289
Hamada N, Fujita T (2002) Effect of air-conditionner on fungal contamination. Atmos Environ 365443-5448. doi:10.1016/S1352-2310(02)00661-1
Hee YC, Yoon KK (2002) Molecular analysis of Exophiala species using molecular markers. Mycobiology 30(1):1–4. doi:10.4489/MYCO.2002.30.1.001
Heinemann S, Beguin H, Nolard N (1994) Biocontamination in air-conditioning. In: Samson RA, Flannigan B, Flannigan ME, Verhoeff AP, Adan OCG, Hoekstra ES (eds) Health implications of fungi in indoor environments. Elsevier Science, Amsterdam, The Netherlands,pp
Hospodsky D, Yamamoto N, Peccia J (2010) Accuracy, precision, and method detection limits of quantitative PCR for airborne bacteria and fungi. Appl Environ Microbiol 76(21):7004–7012. doi:10.1128/AEM.01240-10
Iwen PC, Hinrichs SH, Rupp ME (2002) Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Med Mycol 40(1):87–109. doi:10.1080/mmy.40.1.87.109
Kawasaki M, Ishizaki H, Nishimura K, Miyaji M (1990) Mitochondrial DNA analysis of Exophiala jeanselmei and Exophiala dermatitidis. Mycopathologia 110(2):107–112. doi:10.1007/BF00446999
Kawasaki M, Anzawa K, Tanabe, H, Ochizuki T, Ishizaki H, Nishimura K (2005) Intra-species variation of genotypes of Exophiala jeanselmei isolated from patients in Japan. Jpn J Med Mycol 45261–45265. doi:10.3314/jjmm.46.261
Kawasaki M, Ishizaki H, Matsumoto T, Matsuda T, Nishimura K, Miyaji M (1999) Mitochondrial DNA analysis of Exophiala jeanselmei var. lecanii-corni and Exophiala castellanii. Mycopathologia 146(2):75–77. doi:10.1023/A:1007057713782
Kelkar U, Bal AM, Kulkarni S (2005) Fungal contamination of air conditionning units in operating theatres in India. JHI 6081-84. doi:10.1016/j.jhin.2004.10.011
Klein D (2002) Quantification using real-time PCR technology: applications and limitations. Trends Mol Med 8(6):257–260
Libert X, Chasseur C, Bladt S, Packeu A, Bureau F, Roosens NH, De Keersmaecker SJC (2015) Development and validation of a qualitative SYBR®green real-time PCR assay for the detection of Aspergillus versicolor from indoor air. Appl Microbiol Biotechnol 99(7):7267–7282. doi:10.1007/s00253-015-6785-9
Masuda M, Naka W, Tajima S, Harada T, Nishikawa T, Kaufman L, Standard P (1989) Deoxyribonucleic acid hybridization studies of Exophiala dermatitidis and Exophiala jeanselmei. Microbiol Immunol 33(8):631–639. doi:10.1111/j.1348-0421.1989.tb02013
Melkin T, Haugland RA, Reponen T, Varma M, Lummus Z, Bernstein D, Wymer LJ, Vesper SJ (2004) Quantitative PCR analysis of houses dust can reveal abnormal mold conditions. J Environ Monit 6(7):615–620. doi:10.1039/B400250D
Mohr PJ, Taylor BN, Newell DB (2008) CODATA recommended values of the fundamental physical constants: 2006. Rev Mod Phys 80(2):633–730. doi:10.1103/RevModPhys.80.633
Nagano Y, Elborn JS, Millar BC, Goldsmith CE, Rendall J, Moore JE (2008) Development of a novel PCR assay for the identification of the black yeast, Exophiala (Wangiella) dermatitidis from adult patients with cystic fibrosis (CF). J Cyst Fibros 7(6):576–580. doi:10.1016/j.jcf.2008.05.004
Najafzadeh MJ, Dolatabadi S, Saradeghi Keisari M, Naseri A, Feng P, De Hoog GS (2013) Detection and identification of opportunistic Exophiala species using the rolling circle amplification of ribosomal internal transcribed spacers. J Microbiol Methods 94(3):338–342. doi:10.1016/j.mimet.2013.06.026
Nishimura K, Miyaji M, Taguchi H, Tanaka R (1987) Fungi in bathwater and sludge of bathroom drainpipes. 1. Frequent isolation of Exophiala species. Mycopathologia 97(1):17–23. doi:10.1007/BF00437326
Nolard N, Chasseur C, Marlier M, Lognay G (2004) Validation des méthodes microbiologiques et chimes de contrôle des lieux de travail. Belspo. http://www.belspo.be/belspo/organisation/publ/pub_ostc/PS/rPS19_fr.pdf. Accessed 22 July 2015
Nucci M, Akiti T, Barreiros G, Silveira F, Revankar SG, Sutton DA, Patterson TF (2001) Nosocomial fungemia due to Exophiala jeanselmei var. jeanselmei and a Rhinocladiella species: newly described causes of bloodstream infection. J Clin Microbiol 39(2):514–518. doi:10.1128/JCM.39.2.514-518.2001
Nucci M, Akiti T, Barreiros G, Silveira F, Revankar SG, Wickes BL, Sutton DA, Patterson TF (2002) Nosocomial outbreak of Exophiala jeanselmei fungemia associated with contamination of hospital water. Clin Infect Dis 34(11):1475–1480. doi:10.1086/340344
Packeu A, Lebecque P, Rodriguez-Villalobos H, Boeras A, Hendrickx M, Bouchara JP, Symoens F (2012) Molecular typing and antifungal susceptibility of Exophiala isolates from patients with cystic fibrosis. J Med Microbiol 61(Pt 9):1226–1233. doi:10.1099/jmm.0.042317-0
Parat S, Fricker-Hidalgo H, Perdrix A, Bemer D, Pelissier N, Grillot R (1996) Airborne fungal contamination in air-conditionning systems: Effect of filtering and humidifying devices. AIHA journal 57996-1001. doi:10.1080/15428119691014323
Pitkaranta M, Meklin T, Hyvarinen A, Nevalainen A, Paulin L, Auvinen P, Lignell U, Rintala H (2011) Molecular profiling of fungal communities in moisture damaged buildings before and after remediation--a comparison of culture-dependent and culture-independent methods. BMC Microbiol 11235-doi:10.1186/1471-2180-11-235
Rutledge RG, Cote C (2003) Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res 31(16):e93. doi:10.1093/nar/gng093
Sarachu M, Colet M (2005) wEMBOSS: a web interface for EMBOSS. Bioinformatics. 21:540–541. doi:10.1093/bioinformatics/bti031
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109(16):6241–6246. doi:10.1073/pnas.1117018109
Sudhadham M, de Hoog GS, Menken SBJ, van den Ende AH G, Sihanonth P (2010) Rapid screening for genotypes as possible markers of virulence in the neurotropic black yeast Exophiala dermatitidis using PCR-RFLP. J Microbiol Methods 80(138):142. doi:10.1016/j.mimet.2009.11.007
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. MBE doi:10.1093/molbev/mst197
United States Environmental Protection Agency (2015) The Environmental Relative Moldiness Index: A Research Tool. United States Environmental Protection Agency. http://www2.epa.gov/sites/production/files/2014-09/documents/moldiness_index_1.pdf. Accessed October 2015
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35:W71–W74. doi:10.1093/nar/gkm306
Vesper SJ (2011) Traditional mould analysis compared to a DNA-based method of mould analysis. Crit Rev Microbiol 37(1):15–24. doi:10.3109/1040841X.2010.506177
Wang F, Mu C, Zhao J-Y, Gao L, Hu X-H, Li H, Tian S-G (2013) Establishment of a real-time fluorescence quantitative PCR method for the detection of clinical Exophiala dermatitidis. Chin J Mycol 8(6):321–324
Wang L, Yokoyama K, Miyaji M, Nishimura K (2001) Identification, classification, and phylogeny of the pathogenic species Exophiala jeanselmei and related species by mitochondrial cytochrome b gene analysis. J Clin Microbiol 39(12):4462–4467. doi:10.1128/JCM.39.12.4462-4467.2001
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand GH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, New York, USA, pp
Woo PC, Ngan AH, Tsang CC, Ling IW, Chan JF, Leung SY, Yuen KY, Lau SK (2013a) Clinical spectrum of Exophiala infections and a novel Exophiala species, Exophiala hongkongensis. J Clin Microbiol 51(1):260–267. doi:10.1128/JCM.02336-12
Woo PC, Ngan AH, Tsang CC, Ling IW, Chan JF, Leung SY, Yuen KY, Lau SK (2013b) Clinical spectrum of Exophiala infections and a novel Exophiala species, Exophiala hongkongensis. J Clin Microbiol 51(1):260–267. doi:10.1128/JCM.02336-12
Zeng JS, De Hoog GS (2008) Exophiala spinifera and its allies: diagnostics from morphology to DNA barcoding. Med Mycol 46(3):193–208. doi:10.1080/13693780701799217
Zeng JS, Sutton DA, Fothergill AW, Rinaldi MG, Harrak MJ, De Hoog GS (2007) Spectrum of clinically relevant Exophiala species in the United States. J Clin Microbiol 45(11):3713–3720. doi:10.1128/JCM.02012-06