The article should only be viewed from the Oxford Journals site, and not hosted by your own personal/institutional web site or that of other third parties, though you or your co-authors may post the URLs on your own sites or those of your institutions/organizations.
All documents in ORBi are protected by a user license.
[en] The settling velocity of diaspores is a key parameter for the measurement of dispersal
ability in wind-dispersed plants and one of the most relevant parameters in explicit dispersal models, but remains largely undocumented in bryophytes. The settling velocities of moss spores were measured and it was determined whether settling velocities can be derived from spore diameter using Stokes’ Law or if specific traits of spore ornamentation cause departures from theoretical expectations.
Zanatta, Florian ; Université de Liège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - aCREA-Ulg
Vanderpoorten, Alain ; Université de Liège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - aCREA-Ulg
Patiño, Jairo; Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) > Island Ecology and Evolution Research Group
Lebeau, Frédéric ; Université de Liège > Ingénierie des biosystèmes (Biose) > Agriculture de précision
Massinon, Mathieu ; Université de Liège > Ingénierie des biosystèmes (Biose) > Agriculture de précision
Hylander, Kristofer; Stockholm University > Department of Ecology, Environment and Plant Sciences
de Haan, Myriam; National Botanic Garden of Belgium > Department of Cryptogamy
Ballings, Petra; National Botanic Garden of Belgium > Department of Cryptogamy
Degreef, Jerôme; National Botanic Garden of Belgium > Department of Cryptogamy
Language :
English
Title :
Measuring spore settling velocity for an improved assessment of dispersal rates in mosses
Ackerman JD. 2002. Diffusivity in a marine macrophyte canopy: implications for submarine pollination and dispersal. American Journal of Botany 89: 1119-1127.
Andersen MC. 1992. An analysis of variability in seed settling velocities of several wind-dispersed Asteraceae. American Journal of Botany 79: 1087-1091.
Andersen MC. 1993. Diaspore morphology and seed dispersal in several winddispersed Asteraceae. American Journal of Botany 80: 487-492.
Arredondo-Nunez AX, Salgado O, Molina-Montenegro MA. 2011. Sphericity and smaller pollen-size are better represented in introduced rather than native plant species. Gayana Botany 68: 330-332.
Aylor DE. 2002. Settling speed of corn (Zea mays) pollen. Journal of Aerosol Science 33: 1601-1607.
Bates D, Machler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1-48.
Bell G, Gonzalez A. 2011. Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. Science 332: 1327-1330.
Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365-377.
Berg MP, Kiers ET, Driessen G. et al. 2010. Adapt or disperse: understanding species persistence in a changing world. Global Change Biology 16: 587-598.
Bolinder K, Niklas KJ, Rydin C. 2015. Aerodynamics and pollen ultrastructure in Ephedra. American Journal of Botany 102: 457-470.
Boros A, Jarai-Komlodi M. 1975. An atlas of recent European moss spores. Budapest: Akadémiai Kiado.
Brubaker LB, Anderson PM, Murray BM, Koon D. 1998. A palynological investigation of true-moss (Bryidae) spores: morphology and occurrence in modern and late Quaternary lake sediments of Alaska. Canadian Journal of Botany 76: 2145-2157.
Burnham K, Anderson D. 2002. Model selection and multimodel inference : a practical information-theoretic approach, 2nd edn. New York: Springer.
Casseau V, De Croon G, Izzo D, Pandolfi C. 2015. Morphologic and aerodynamic considerations regarding the plumed seeds of Tragopogon pratensis and their implications for seed dispersal. PLoS One 10: e0125040. doi:10.1371/journal.pone.0125040.
Chambers JM, Freeny A, Heiberger RM. 1992. Analysis of variance; designed experiments. Pacific Grove, CA: Wadsworth & Brooks/Cole.
Clark CJ, Poulsen JR, Parker VT. 2001. The role of arboreal seed dispersal groups on the seed rain of a lowland tropical forest. Biotropica 33: 606-620.
Clobert J, Baguette M, Benton TG, Bullock JM (eds.). 2012. Dispersal ecology and evolution. Oxford: Oxford University Press.
Cody ML, Overton JM. 1996. Short-term evolution of reduced dispersal in island plant populations. Journal of Ecology 84: 53-61.
Cullingham CI, Pond BA, Kyle CJ, Rees EE, Rosatte RC, White BN. 2008. Combining direct and indirect genetic methods to estimate dispersal for informing wildlife disease management decisions. Molecular Ecology 17: 4874-4886.
DamN. 2013. Spores do travel. Mycologia 105: 1618-1622.
Di-Giovanni F, Kevan PG, NasrME. 1995. The variability in settling velocities of some pollen and spores. Grana 34: 39-44.
During HJ. 1992. Ecological classification of bryophytes and lichens. In: Bates JW, Farmer AM, eds, Bryophytes and lichens in a changing environment. Oxford: Clarendon Press, 1-31.
Farrell EJ, Sherman DJ. 2015. A new relationship between grain size and fall (settling) velocity in air. Progress in Physical Geography 39: 361-387.
Ferrandino FJ, Aylor DE. 1984. Settling speed of cluster of spores. Ecology and Epidemiology 74: 969-972.
Ginoux P, Chin M, Tegen I, et al. 2001. Sources and distributions of dust aerosols simulated with the GOCART model. Journal of Geophysical Research 106: 20255-20273.
GreeneDF, Johnson EA. 1990. The aerodynamics of plumed seeds. Functional Ecology 4: 117-125.
Gregory PH. 1973. The microbiology of the atmosphere, 2nd edn. New York: Wiley.
Hall JA, Walter GH. 2011. Does pollen aerodynamics correlate with pollination vector? Pollen settling velocity as a test for wind versus insect pollination among cycads (Gymnospermae: Cycadaceae: Zamiaceae). Biological Journal of the Linnean Society 104: 75-92.
HillMO, Preston CD, Bosanquet SDS, Roy DB. 2007. BRYOATT attributes of British and Irish mosses, liverworts and hornworts. Cambridge: Centre for Ecology and Hydrology.
Hinds WC. 1999. Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles, 2nd edn. New York:Wiley-Interscience.
Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models. Biometrical Journal 50: 346-363.
Huang H, Ye R, Qi M, et al. 2015. Wind-mediated horseweed (Conyza canadensis) gene flow: pollen emission, dispersion, and deposition. Ecology and Evolution 5: 2646-2658.
Hussein T, Norros V, Hakala J, et al. 2013. Species traits and inertial deposition of fungal spores. Journal of Aerosol Science 61: 81-98.
Hutsemékers V, Dopagne C, Vanderpoorten A. 2008. How far and how fast do bryophytes disperse at the landscape scale? Diversity and Distributions 14: 483-492.
KoenigWD, Van Vuren D, Hooge PN. 1996. Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends in Ecology and Evolution 11: 514-517.
Kvalseth TO. 1985. Cautionary note about R2. American Statistician 39: 279-285.
Löbel S, Rydin HK. 2010. Trade-offs and habitat constraints in the establishment of epiphytic bryophytes. Functional Ecology 24: 887-897.
Lönnell N, Hylander K, Jonsson BG, Sundberg S. 2012. The fate of the missing spores-patterns of realized dispersal beyond the closest vicinity of a sporulating moss. PLoS One 7: e41987. doi:10.1371/journal.pone.0041987.
Lönnell N, Jonsson BG, Hylander K. 2014. Production of diaspores at the landscape level regulates local colonization: an experiment with a sporedispersed moss. Ecography 37: 591-598.
Massinon M, Lebeau F. 2012. Experimental method for the assessment of agricultural spray retention based on high-speed imaging of drop impact on a synthetic superhydrophobic surface. Biosystems Engineering 112: 56-64.
Matlack GR. 1987. Diaspore diameter, shape, and fall behaviour in winddispersed plant species. American Journal of Botany 74: 1150-1160.
McGinley MA, Brigham EJ. 1989. Fruit morphology and terminal velocity in Tragopogon dubious (L.). Functional Ecology 3: 489-496.
Medina NG, Estébanez B. 2014. Does spore ultrastructure mirror different dispersal strategies in mosses? A study of seven Iberian Orthotrichum species. PLoS One 9: e112867. doi:10.1371/journal.pone.0112867.
Mogensen GS. 1983. The spore. In: Schuster RM, ed, New manual of bryology, Vol. 1. Nichinan: Hattori Botanical Lab, 324-342.
Monteith JL, Unsworth MH. 2013. Principles of environmental physics plants, animals, and the atmosphere, 4th edn. Oxford: Academic Press.
Nathan R, Horvitz N, He Y, Kuparinen A, Schurr FM, Katul GG. 2011. Spread of North American wind-dispersed trees in future environments. Ecology Letters 14: 211-219.
Niklas KJ. 1985. The aerodynamics of wind pollination. Botanical Review 51: 328-386.
Niklas KJ. 1992. Plant biomechanics. Chicago: University of Chicago Press.
Norros V, Rannik U, Hussein T, Petaja T, VesalaT, OvaskainenO. 2014. Do small spores disperse further than large spores? Ecology 95: 1612-1621.
Olivieri I, Michalakis Y, Gouyon PH. 1995. Metapopulation genetics and the evolution of dispersal. American Naturalist 146: 202-228.
Pohjamo M, Laaka-Lindberg S, Ovaskainen O, Korpelainen H. 2006. Dispersal potential of spores and asexual propagules in the epixylic hepatic Anastrophyllum hellerianum. Evolutionary Ecology 20: 415-430.
R Development Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Roper M, Pepper RE, Brenner MP, Pringle A. 2008. Explosively launched spores of ascomycete fungi have drag-minimizing shapes. Proceedings of the National Academy of Sciences, USA 105: 20583-20588.
Ruete A, Fritz O, Snall T. 2014. A model for non-equilibrium metapopulation dynamics utilizing data on species occupancy, patch ages and landscape history. Journal of Ecology 102: 678-689.
Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. NatureMethods 9: 671-675.
Schwendemann AB, Wang G, Mertz ML, McWilliams RT, Thatcher SL, Osborn JM. 2007. Aerodynamics of saccate pollen and its implications for wind pollination. American Journal of Botany 94: 1371-1381.
Seeler KA. 2014. System dynamics. New York: Springer.
Seinfeld JH, Pandis SN. 1998. Atmospheric chemistry and physics. New York: Wiley.
Sundberg S. 2010. Size matters for violent discharge height and settling speed of Sphagnum spores: important attributes for dispersal potential. Annals of Botany 105: 291-300.
Sundberg S. 2013. Spore rain in relation to regional sources and beyond. Ecography 36: 364-373.
Tackenberg O. 2003. Modeling long-distance dispersal of plant diaspore by wind. EcologicalMonographs 73: 173-189.
Talavera M, Arista M, Ortiz PL. 2012. Evolution of dispersal traits in a biogeographical context: a study using the heterocarpic Rumex bucephalophorus as a model. Journal of Ecology 100: 1194-1203.
Thompson PM, Goodman S. 1997. Direct and indirect estimates of dispersal distances. Trends in Ecology and Evolution 12: 195-196.
Travis JMJ, Delgado M, Bocedi G, et al. 2013. Dispersal and species' responses to climate change. Oikos 122: 1532-1540.
Van Zanten BO, Pocs T. 1981. Distribution and dispersal of bryophytes. Advances in Bryology 1: 479-562.
Vekemans X, Hardy OJ. 2004. New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology 13: 921-935.
Wilkinson DM, Koumoutsaris S, Mitchell EAD, Bey I. 2012. Modelling the effect of size on the aerial dispersal of microorganisms. Journal of Biogeography 39: 89-97.
Zuur A, Leno EN, Walker NJ, Saveliev AA, Smith GM. 2009. Mixed effects models and extensions in ecology with R. New York: Springer.