[en] Molecular data concerning the involvement of roots in the genetic pathways regulating floral transition are lacking. In this study, we performed global analyses of the root transcriptome in Arabidopsis in order to identify flowering time genes that are expressed in the roots and genes that are differentially expressed in the roots during the induction of flowering. Data mining of public microarray experiments uncovered that about 200 genes whose mutations are reported to alter flowering time are expressed in the roots (i.e. were detected in more than 50% of the microarrays). However, only a few flowering integrator genes passed the analysis cutoff. Comparison of root transcriptome in short days and during synchronized induction of flowering by a single 22-h long day revealed that 595 genes were differentially expressed. Enrichment analyses of differentially expressed genes in root tissues, gene ontology categories, and cis-regulatory elements converged towards sugar signaling. We concluded that roots are integrated in systemic signaling, whereby carbon supply coordinates growth at the whole plant level during the induction of flowering. This coordination could involve the root circadian clock and cytokinin biosynthesis as a feed forward loop towards the shoot.
Bouché, F., Lobet, G., Tocquin, P. & Périlleux, C. FLOR-ID: An interactive database of flowering-Time gene networks in Arabidopsis thaliana. Nucleic Acids Res 44, D1167-D1171 (2016).
Song, Y. H., Shim, J. S., Kinmonth-Schultz, H. A. & Imaizumi, T. Photoperiodic flowering: Time measurement mechanisms in leaves. Annu Rev Plant Biol 66, 441-464 (2015).
King, R. W., Hisamatsu, T., Goldschmidt, E. E. & Blundell, C. The nature of floral signals in Arabidopsis. I. Photosynthesis and a far-red photoresponse independently regulate flowering by increasing expression of FLOWERING LOCUS T (FT). J Exp Bot 59, 3811-3820 (2008).
Wahl, V. et al. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339, 704-707 (2013).
Ortiz-Marchena, M. I. et al. Photoperiodic control of carbon distribution during the floral transition in Arabidopsis. Plant Cell 26, 565-584 (2014).
Corbesier, L., Lejeune, P. & Bernier, G. The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta 206, 131-137 (1998).
Eriksson, S., Böhlenius, H., Moritz, T. & Nilsson, O. GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18, 2172-2181 (2006).
Corbesier, L. et al. Cytokinin levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floral transition. J Exp Bot 54, 2511-2517 (2003).
DAloia, M. et al. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J 65, 972-979 (2011).
Havelange, A., Lejeune, P. & Bernier, G. Sucrose/cytokinin interaction in Sinapis alba at floral induction: A shoot-To-root-To-shoot physiological loop. Physiol Plant 109, 343-350 (2000).
Corbesier, L. et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033 (2007).
Navarro, C., Cruz-Oro, E. & Prat, S. Conserved function of FLOWERING LOCUS T (FT) homologues as signals for storage organ differentiation. Curr Opin Plant Biol 23, 45-53 (2014).
Lee, R., Baldwin, S., Kenel, F., McCallum, J. & Macknight, R. FLOWERING LOCUS T genes control onion bulb formation and flowering. Nat Commun 4, 1-9 (2013).
Bernier, G. & Périlleux, C. A physiological overview of the genetics of flowering time control. Plant Biotechnol J 3, 3-16 (2005).
Abe, M. et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052-1056 (2005).
Macknight, R. et al. Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. Plant Cell 14, 877-888 (2002).
Lachowiec, J., Shen, X., Queitsch, C. & Carlborg, Ö. A Genome-wide association analysis reveals epistatic cancellation of additive genetic variance for root length in Arabidopsis thaliana. PLoS Genet 11, e1005541 (2015).
Sibout, R., Plantegenet, S. & Hardtke, C. S. Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root. Curr Biol 18, 458-463 (2008).
Kolesnikov, N. et al. ArrayExpress update-simplifying data submissions. Nucleic Acids Res 43, D1113-D1116 (2015).
Mishra, P. & Panigrahi, K. C. GIGANTEA-an emerging story. Front Plant Sci 6, 1-15 (2015).
Tocquin, P. et al. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biol 3, 1-10 (2003).
Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M. & Araki, T. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960-1962 (1999).
Garay-Arroyo, A. et al. The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression. EMBO J 32, 2884-2895 (2013).
Pérez-Ruiz, R. V. et al. XAANTAL2 (AGL14) is an important component of the complex gene regulatory network that underlies Arabidopsis shoot apical meristem transitions. Mol Plant 8, 796-813 (2015).
Brady, S. M. et al. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318, 801-806 (2007).
Korkuc, P., Schippers, J. H. M. & Walther, D. Characterization and identification of cis-regulatory elements in Arabidopsis based on single-nucleotide polymorphism information. Plant Physiol 164, 181-200 (2014).
Hsu, P. Y. & Harmer, S. L. Wheels within wheels: The plant circadian system. Trends Plant Sci 19, 240-249 (2014).
Voß, U. et al. The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nat Commun 6, 7641 (2015).
Covington, M. F., Maloof, J. N., Straume, M., Kay, S. A. & Harmer, S. L. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol 9, R130 (2008).
Koornneef, M., Hanhart, C. J. & van der Veen, J. H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229, 57-66 (1991).
Streitner, C. et al. The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. Plant J 56, 239-250 (2008).
Miyawaki, K. et al. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103, 16598-16603 (2006).
Jaeger, K. E., Pullen, N., Lamzin, S., Morris, R. J. & Wigge, P. A. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell 25, 820-833 (2013).
Birnbaum, K. et al. A gene expression map of the Arabidopsis root. Science 302, 1956-1960 (2003).
Takada, S. & Goto, K. TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15, 2856-2865 (2003).
Silva-Navas, J. et al. D-Root: A system for cultivating plants with the roots in darkness or under different light conditions. Plant J 84, 244-255 (2015).
Molas, M. L., Kiss, J. Z. & Correll, M. J. Gene profiling of the red light signalling pathways in roots. J Exp Bot 57, 3217-3229 (2006).
Khanna, R., Kikis, E. A. & Quail, P. H. EARLY FLOWERING 4 functions in phytochrome B-regulated seedling de-etiolation. Plant Physiol 133, 1530-1538 (2003).
Indorf, M., Cordero, J., Neuhaus, G. & Rodríguez-Franco, M. SALT TOLERANCE (STO), a stress-related protein, has a major role in light signalling. Plant J 51, 563-574 (2007).
Doyle, M. R. et al. The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419, 74-77 (2002).
Dodd, A. N., Belbin, F. E., Frank, A. & Webb, A. A. R. Interactions between circadian clocks and photosynthesis for the temporal and spatial coordination of metabolism. Front Plant Sci 6, 245 (2015).
Parizot, B., Roberts, I., Raes, J., Beeckman, T. & De Smet, I. In silico analyses of pericycle cell populations reinforce their relation with associated vasculature in Arabidopsis. Philos Trans R Soc Lond, B, Biol Sci 367, 1479-1488 (2012).
Marquès-Bueno, M. M. et al. A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. Plant J 85, 320-333 (2016).
de Montaigu, A. et al. Natural diversity in daily rhythms of gene expression contributes to phenotypic variation. Proc Natl Acad Sci USA 112, 905-910 (2015).
Haydon, M. J., Mielczarek, O., Robertson, F. C., Hubbard, K. E. & Webb, A. A. R. Photosynthetic entrainment of the Arabidopsis thaliana circadian clock. Nature 502, 689-692 (2013).
James, A. B. et al. The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots. Science 322, 1832-1835 (2008).
Yazdanbakhsh, N., Sulpice, R., Graf, A., Stitt, M. & Fisahn, J. Circadian control of root elongation and C partitioning in Arabidopsis thaliana. Plant Cell Environ 34, 877-894 (2011).
Geigenberger, P. Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol 155, 1566-1577 (2011).
Sulpice, R. et al. Arabidopsis coordinates the diurnal regulation of carbon allocation and growth across a wide range of photoperiods. Mol Plant 7, 137-155 (2014).
Rook, F., Hadingham, S. A., Li, Y. & Bevan, M. W. Sugar and ABA response pathways and the control of gene expression. Plant Cell Environ 29, 426-434 (2006).
Michael, T. P. et al. Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet 4, e14 (2008).
Trémousaygue, D. et al. Internal telomeric repeats and TCP domain protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells. Plant J 33, 957-966 (2003).
Zhang, X., Ju, H.-W., Huang, P., Chung, J.-S. & Kim, C. S. Functional identification of AtSKIP as a regulator of the cell cycle signaling pathway in Arabidopsis thaliana. J. Plant Biol. 55, 481-488 (2012).
López-Ochoa, L., Acevedo-Hernández, G., Martínez-Hernández, A., Argöello-Astorga, G. & Herrera-Estrella, L. Structural relationships between diverse cis-Acting elements are critical for the functional properties of a rbcS minimal light regulatory unit. J Exp Bot 58, 4397-4406 (2007).
Lu, C.-A., Ho, T.-H. D., Ho, S.-L. & Yu, S.-M. Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of alpha-Amylase gene expression. Plant Cell 14, 1963-1980 (2002).
Lu, C. A., Lim, E. K. & Yu, S. M. Sugar response sequence in the promoter of a rice alpha-Amylase gene serves as a transcriptional enhancer. J Biol Chem 273, 10120-10131 (1998).
Hirose, N. et al. Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59, 75-83 (2008).
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47-e47 (2015).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Roy Stat Soc Series B Stat Methodol 57, 289-300 (1995).
Wilson, C. L. & Miller, C. J. Simpleaffy: A BioConductor package for Affymetrix Quality Control and data analysis. Bioinformatics 21, 3683-3685 (2005).
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PloS one 6, e21800 (2011).
Vandesompele, J. et al. Accurate normalization of real-Time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, research0034. 1-0034.11 (2002).
Lobet, G., Pagès, L. & Draye, X. A novel image analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol 157, 29-39 (2011).
Wickham, H. ggplot2, doi: 10.1007/978-0-387-98141-3 (Springer New York, 2009).
Lamesch, P. et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40, D1202-D1210 (2012).
Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nucleic Acids Res 43, gkv416-W49 (2015).