[en] iving/controlled polymerization methods have enabled the synthesis of numerous (co)polymers with defined compositions and architectures. However, the precision design of poly(vinylamine)-based copolymers remains challenging despite their extensive use in various fields of applications and the clear benefits to finely tune their properties. Here, we report on a two-step strategy for the synthesis of tailor-made poly(vinylamine) derivatives through the organometallic- mediated radical (co)polymerization (OMRP) of N-vinyl- acetamide and/or N-methylvinylacetamide followed by acid hydrolysis of the acetamide groups. A series of well-defined homopolymers as well as statistical and block copolymers with pendant primary and/or secondary amines having controlled molar masses, compositions, and low dispersities were produced accordingly. The reactivity ratios of the comonomers as well as the composition drift along the chain were determined in order to have a precise idea of the polymer structures. These advances represent a significant step toward an efficient platform for synthesis of this important class of amino group-containing (co)polymers.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM) The Unit research: Complex and Entangled Systems from Atoms to Materials (CESAM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Dréan, Mathilde ; University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Guégan, Philippe; Sorbonne University, University Paris 6, CNRS, Institut Parisien de Chimie Moléculaire, Team “Chimie des Polymères” (LCP), Paris, France
Detrembleur, Christophe ; University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Jérôme, Christine ; University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Rieger, Jutta ; Sorbonne University, University Paris 6, CNRS, Institut Parisien de Chimie Moléculaire, Team “Chimie des Polymères” (LCP), Paris, France
Debuigne, Antoine ; University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Language :
English
Title :
Controlled synthesis of poly(vinylamine)-based copolymers by organometallic-mediated radical polymerization
Publication date :
28 June 2016
Journal title :
Macromolecules
ISSN :
0024-9297
eISSN :
1520-5835
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Volume :
49
Issue :
13
Pages :
4817-4827
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique The International Doctoral School IDS-Funmat
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Pelton, R. Polyvinylamine: A Tool for Engineering Interfaces Langmuir 2014, 30, 15373-15382 10.1021/la5017214
Geffroy, C.; Labeau, M..; Wong, K.; Cabane, B.; Cohen Stuart, M.. Kinetics of adsorption of polyvinylamine onto cellulose Colloids Surf., A 2000, 172 (1-3) 47-56 10.1016/S0927-7757(00)00499-4
Wang, S.; Wang, M.; Chen, F. Synthesis of Poly[vinylamine-co-(sodium acrylate)] and its Application as a Paper Strength Additive BioResources 2014, 10 (1) 750-759 10.15376/biores.10.1.750-759
Kroener, H. Innovative chemical additives for packaging paper Wochenblatt fuer Pap. 2009, 137 (5) 172-175
Pelton, R.; Hong, J. Some properties of newsprint impregnated with polyvinylamine Tappi J. 2002, 1 (10) 21-25
Pinschmidt, R. K. Polyvinylamine at last J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 2257-2283 10.1002/pola.23992
Kobayashi, S.; Suh, K. Do; Shirokura, Y. Chelating ability of poly(vinylamine): effects of polyamine structure on chelation Macromolecules 1989, 22 (5) 2363-2366 10.1021/ma00195a062
Toutianoush, A.; El-Hashani, A.; Schnepf, J.; Tieke, B. Multilayer membranes of p-sulfonato-calix[8]arene and polyvinylamine and their use for selective enrichment of rare earth metal ions Appl. Surf. Sci. 2005, 246 (4) 430-436 10.1016/j.apsusc.2004.11.048
Katchalsky, A.; Mazur, J.; Spitnik, P. SECTION II: Polybase properties of polyvinylamine J. Polym. Sci. 1957, 23 (104) 513-532 10.1002/pol.1957.1202310401
Novak, B. M.; Cafmeyer, J. T. Meta-stable enamines: Synthesis of simple enamines via catalytic isomerization of allylic amine substrates and their polymerization behavior J. Am. Chem. Soc. 2001, 123, 11083-11084 10.1021/ja011609i
Mullier, M.; Smets, G. Polymers and group interaction. IV. Hofmann reaction on polyvinylamides J. Polym. Sci. 1957, 23 (104) 915-930 10.1002/pol.1957.1202310435
Achari, A. El; Coqueret, X.; Lablache-Combier, A.; Loucheux, C. Preparation of polyvinylamine from polyacrylamide: a reinvestigation of the hofmann reaction Makromol. Chem. 1993, 194 (7) 1879-1891 10.1002/macp.1993.021940703
Maki, Y.; Mori, H.; Endo, T. Controlled RAFT Polymerization ofN-Vinylphthalimide and its Hydrazinolysis to Poly(vinyl amine) Macromol. Chem. Phys. 2007, 208 (24) 2589-2599 10.1002/macp.200700330
Gu, L.; Zhu, S.; Hrymak, A. N. Acidic and basic hydrolysis of poly(N-vinylformamide) J. Appl. Polym. Sci. 2002, 86 (13) 3412-3419 10.1002/app.11364
Witek, E.; Pazdro, M.; Bortel, E. Mechanism for Base Hydrolysis of Poly(N-vinylformamide) J. Macromol. Sci., Part A: Pure Appl. Chem. 2007, 44 (5) 503-507 10.1080/10601320701235461
Zhu, M.; Radcliffe, E. B.; Ragsdale, D. W.; MacRae, I. V.; Seeley, M. W. Low-level jet streams associated with spring aphid migration and current season spread of potato viruses in the U.S. northern Great Plains Agric. For. Meteorol. 2006, 138, 192-202 10.1016/j.agrformet.2006.05.001
Akashi, M.; Nakano, S.; Kishida, A. Synthesis of poly(N-vinylisobutyramide) from poly(N-vinylacetamide) and its thermosensitive property J. Polym. Sci., Part A: Polym. Chem. 1996, 34 (2) 301-303 10.1002/(SICI)1099-0518(19960130)34:2<301::AID-POLA16>3.3.CO;2-F
Akashi, M.; Saihata, S.; Yashima, E.; Sugita, S.; Marumo, K. Novel nonionic and cationic hydrogels prepared from N-vinylacetamide J. Polym. Sci., Part A: Polym. Chem. 1993, 31 (5) 1153-1160 10.1002/pola.1993.080310509
Nakabayashi, K.; Mori, H. Recent progress in controlled radical polymerization of N-vinyl monomers Eur. Polym. J. 2013, 49 (10) 2808-2838 10.1016/j.eurpolymj.2013.07.006
Charmot, D.; Corpart, P.; Adam, H.; Zard, S. Z.; Biadatti, T.; Bouhadir, G. Controlled radical polymerization in dispersed media Macromol. Symp. 2000, 150 (1) 23-32 10.1002/1521-3900(200002)150:1<23::AID-MASY23>3.0.CO;2-E
Destarac, M.; Charmot, D.; Franck, X.; Zard, S. Z. Dithiocarbamates as universal reversible addition-fragmentation chain transfer agents Macromol. Rapid Commun. 2000, 21 (15) 1035-1039 10.1002/1521-3927(20001001)21:15<1035::AID-MARC1035>3.0.CO;2-5
Maki, Y.; Mori, H.; Endo, T. Synthesis of Amphiphilic and Double-Hydrophilic Block Copolymers Containing Poly(vinyl amine) Segments by RAFT Polymerization of N -Vinylphthalimide Macromol. Chem. Phys. 2010, 211 (1) 45-56 10.1002/macp.200900332
Nakabayashi, K.; Noda, D.; Watanabe, Y.; Mori, H. Rylene bisimide-based nanoparticles with cross-linked core and thermoresponsive shell using poly(vinyl amine)-based block copolymers Polymer 2015, 68, 17-24 10.1016/j.polymer.2015.04.075
Devasia, R.; Bindu, R. L.; Borsali, R.; Mougin, N.; Gnanou, Y. Controlled Radical Polymerization ofN-Vinylpyrrolidone by Reversible Addition-Fragmentation Chain Transfer Process Macromol. Symp. 2005, 229 (1) 8-17 10.1002/masy.200551102
Pound, G.; McLeary, J. B.; McKenzie, J. M.; Lange, R. F. M.; Klumperman, B. In-Situ NMR Spectroscopy for Probing the Efficiency of RAFT/MADIX Agents Macromolecules 2006, 39 (23) 7796-7797 10.1021/ma061843z
Shao, L.; Hu, M.; Chen, L.; Xu, L.; Bi, Y. RAFT polymerization of N-vinylcaprolactam and effects of the end group on the thermal response of poly(N-vinylcaprolactam) React. Funct. Polym. 2012, 72 (6) 407-413 10.1016/j.reactfunctpolym.2012.04.002
Wan, D.; Zhou, Q.; Pu, H.; Yang, G. Controlled radical polymerization ofN-vinylcaprolactam mediated by xanthate or dithiocarbamate J. Polym. Sci., Part A: Polym. Chem. 2008, 46 (11) 3756-3765 10.1002/pola.22722
Beija, M.; Marty, J.-D.; Destarac, M. Thermoresponsive poly(N-vinyl caprolactam)-coated gold nanoparticles: sharp reversible response and easy tunability Chem. Commun. 2011, 47 (10) 2826 10.1039/c0cc05184e
Hurtgen, M.; Detrembleur, C.; Jerome, C.; Debuigne, A. Polym. Rev. 2011, 51, 188-213 10.1080/15583724.2011.566401
Poli, R. New Phenomena in Organometallic-Mediated Radical Polymerization (OMRP) and Perspectives for Control of Less Active Monomers Chem.-Eur. J. 2015, 21 (19) 6988-7001 10.1002/chem.201500015
Allan, L. E. N.; Perry, M. R.; Shaver, M. P. Organometallic mediated radical polymerization Prog. Polym. Sci. 2012, 37 (1) 127-156 10.1016/j.progpolymsci.2011.07.004
Debuigne, A.; Champouret, Y.; Jerome, R.; Poli, R.; Detrembleur, C. Mechanistic insights into the cobalt-mediated radical polymerization (CMRP) of vinyl acetate with cobalt (III) adducts as initiators Chem.-Eur. J. 2008, 14 (13) 4046-4059 10.1002/chem.200701867
Morin, A. N.; Detrembleur, C.; Jerome, C.; De Tullio, P.; Poli, R.; Debuigne, A. Effect of Head-to-Head Addition in Vinyl Acetate Controlled Radical Polymerization: Why Is Co(acac)2-Mediated Polymerization so Much Better? Macromolecules 2013, 46 (11) 4303-4312 10.1021/ma400651a
Debuigne, A.; Schoumacher, M.; Willet, N.; Riva, R.; Zhu, X.; Ruetten, S.; Jerome, C.; Detrembleur, C. New functional poly(N-vinylpyrrolidone) based (co)polymers via photoinitiated cobalt-mediated radical polymerization Chem. Commun. 2011, 47 (47) 12703-12705 10.1039/c1cc15471k
Debuigne, A.; Morin, A. N.; Kermagoret, A.; Piette, Y.; Detrembleur, C.; Jerome, C.; Poli, R. Key Role of Intramolecular Metal Chelation and Hydrogen Bonding in the Cobalt-Mediated Radical Polymerization of N-Vinyl Amides Chem.-Eur. J. 2012, 18 (40) 12834-12844 10.1002/chem.201201456
Hurtgen, M.; Liu, J.; Debuigne, A.; Jerome, C.; Detrembleur, C. Synthesis of thermo-responsive poly(N-vinylcaprolactam)-containing block copolymers by cobalt-mediated radical polymerization J. Polym. Sci., Part A: Polym. Chem. 2012, 50 (2) 400-408 10.1002/pola.25045
Kermagoret, A.; Mathieu, K.; Thomassin, J.-M.; Fustin, C.-A.; Duchene, R.; Jerome, C.; Detrembleur, C.; Debuigne, A. Double thermoresponsive di- and triblock copolymers based on N-vinylcaprolactam and N-vinylpyrrolidone: synthesis and comparative study of solution behaviour Polym. Chem. 2014, 5 (22) 6534-6544 10.1039/C4PY00852A
Liu, J.; Debuigne, A.; Detrembleur, C.; Jerome, C. Poly(N-vinylcaprolactam): A Thermoresponsive Macromolecule with Promising Future in Biomedical Field Adv. Healthcare Mater. 2014, 3 (12) 1941-1968 10.1002/adhm.201400371
Kermagoret, A.; Fustin, C.-A.; Bourguignon, M.; Detrembleur, C.; Jerome, C.; Debuigne, A. One-pot controlled synthesis of double thermoresponsive N-vinylcaprolactam-based copolymers with tunable LCSTs Polym. Chem. 2013, 4 (8) 2575-2583 10.1039/c3py00134b
Debuigne, A.; Caille, J. R.; Jérôme, R. Synthesis of end-functional poly(vinyl acetate) by cobalt-mediated radical polymerization Macromolecules 2005, 38 (13) 5452-5458 10.1021/ma047726q
Fineman, M.; Ross, S. D. Linear method for determining monomer reactivity ratios in copolymerization J. Polym. Sci. 1950, 5 (2) 259-262 10.1002/pol.1950.120050210
Kelen, T.; Tudos, F. Analysis of the Linear Methods for Determining Copolymerization Reactivity Ratios. I. A New Improved Linear Graphic Method J. Macromol. Sci., Chem. 1975, 9 (1) 1-27 10.1080/00222337508068644
Wamsley, A.; Jasti, B.; Phiasivongsa, P.; Li, X. Synthesis of random terpolymers and determination of reactivity ratios ofN-carboxyanhydrides of leucine, ?-benzyl aspartate, and valine J. Polym. Sci., Part A: Polym. Chem. 2004, 42 (2) 317-325 10.1002/pola.11020
Ting, J. M.; Navale, T. S.; Bates, F. S.; Reineke, T. M. Precise compositional control and systematic preparation of multimonomeric statistical copolymers ACS Macro Lett. 2013, 2, 770-774 10.1021/mz4003112
Skeist, I. Copolymerization: the Composition Distribution Curve J. Am. Chem. Soc. 1946, 68 (9) 1781-1784 10.1021/ja01213a031
Kermagoret, A.; Debuigne, A.; Jérôme, C.; Detrembleur, C. Precision design of ethylene- and polar-monomer-based copolymers by organometallic-mediated radical polymerization Nat. Chem. 2014, 6 (3) 179-187 10.1038/nchem.1850
Maria, S.; Kaneyoshi, H.; Matyjaszewski, K.; Poli, R. Effect of Electron Donors on the Radical Polymerization of Vinyl Acetate Mediated by [Co(acac)2]: Degenerative Transfer versus Reversible Homolytic Cleavage of an Organocobalt (III) Complex Chem.-Eur. J. 2007, 13 (9) 2480-2492 10.1002/chem.200601457
Dréan, M.; Guégan, P.; Jérôme, C.; Rieger, J.; Debuigne, A. Far beyond primary poly(vinylamine)s through free radical copolymerization and amide hydrolysis Polym. Chem. 2016, 7 (1) 69-78 10.1039/C5PY01325A
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.