Delacroix, Laurence ; Université de Liège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Abraira V.E., Del Rio T., Tucker A.F., Slonimsky J., Keirnes H.L., Goodrich L.V. Cross-repressive interactions between Lrig3 and netrin 1 shape the architecture of the inner ear. Development 2008, 135:4091-4099.
Agerman K., Hjerling-Leffler J., Blanchard M.P., Scarfone E., Canlon B., Nosrat C., Ernfors P. BDNF gene replacement reveals multiple mechanisms for establishing neurotrophin specificity during sensory nervous system development. Development 2003, 130:1479-1491.
Ahmed M., Xu J., Xu P.X. EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear. Development 2012, 139:1965-1977.
Ahmed M., Wong E.Y., Sun J., Xu J., Wang F., Xu P.X. Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Dev. Cell 2012, 22:377-390.
Appler J.M., Goodrich L.V. Connecting the ear to the brain: molecular mechanisms of auditory circuit assembly. Prog. Neurobiol. 2011, 93:488-508.
Appler J.M., Lu C.C., Druckenbrod N.R., Yu W.M., Koundakjian E.J., Goodrich L.V. Gata3 is a critical regulator of cochlear wiring. J. Neurosci. 2013, 33:3679-3691.
Avraham K.B., Hasson T., Steel K.P., Kingsley D.M., Russell L.B., Mooseker M.S., Copeland N.G., Jenkins N.A. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat. Genet. 1995, 11:369-375.
Bank L.M., Bianchi L.M., Ebisu F., Lerman-Sinkoff D., Smiley E.C., Shen Y.C., Ramamurthy P., Thompson D.L., Roth T.M., Beck C.R., Flynn M., Teller R.S., Feng L., Llewellyn G.N., Holmes B., Sharples C., Coutinho-Budd J., Linn S.A., Chervenak A.P., Dolan D.F., Benson J., Kanicki A., Martin C.A., Altschuler R., Koch A.E., Jewett E.M., Germiller J.A., Barald K.F. Macrophage migration inhibitory factor acts as a neurotrophin in the developing inner ear. Development 2012, 139:4666-4674.
Barclay M., Ryan A.F., Housley G.D. Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development. Neural Dev. 2011, 6:33.
Bell D., Streit A., Gorospe I., Varela-Nieto I., Alsina B., Giraldez F. Spatial and temporal segregation of auditory and vestibular neurons in the otic placode. Dev. Biol. 2008, 322:109-120.
Berglund A.M., Ryugo D.K. Hair cell innervation by spiral ganglion neurons in the mouse. J. Comp. Neurol. 1987, 255:560-570.
Beurg M., Nam J.H., Chen Q., Fettiplace R. Calcium balance and mechanotransduction in rat cochlear hair cells. J. Neurophysiol. 2010, 104:18-34.
Beutner D., Moser T. The presynaptic function of mouse cochlear inner hair cells during development of hearing. J. Neurosci. 2001, 21:4593-4599.
Bianchi L.M., Cohan C.S. Developmental regulation of a neurite-promoting factor influencing statoacoustic neurons. Brain Res. Dev. Brain Res. 1991, 64:167-174.
Bianchi L.M., Cohan C.S. Effects of the neurotrophins and CNTF on developing statoacoustic neurons: comparison with an otocyst-derived factor. Dev. Biol. 1993, 159:353-365.
Bianchi L.M., Gale N.W. Distribution of Eph-related molecules in the developing and mature cochlea. Hear. Res. 1998, 117:161-172.
Bianchi L.M., Gray N.A. EphB receptors influence growth of ephrin-B1-positive statoacoustic nerve fibers. Eur. J. Neurosci. 2002, 16:1499-1506.
Bianchi L.M., Daruwalla Z., Roth T.M., Attia N.P., Lukacs N.W., Richards A.L., White I.O., Allen S.J., Barald K.F. Immortalized mouse inner ear cell lines demonstrate a role for chemokines in promoting the growth of developing statoacoustic ganglion neurons. J. Assoc. Res. Otolaryngol. 2005, 6:355-367.
Bok J., Zenczak C., Hwang C.H., Wu D.K. Auditory ganglion source of Sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells. Proc. Natl. Acad. Sci. U. S. A. 2013, 110:13869-13874.
Bok J., Raft S., Kong K.A., Koo S.K., Drager U.C., Wu D.K. Transient retinoic acid signaling confers anterior-posterior polarity to the inner ear. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:161-166.
Brandt A., Khimich D., Moser T. Few CaV1.3 channels regulate the exocytosis of a synaptic vesicle at the hair cell ribbon synapse. J. Neurosci. 2005, 25:11577-11585.
Brown A.S., Epstein D.J. Otic ablation of smoothened reveals direct and indirect requirements for Hedgehog signaling in inner ear development. Development 2011, 138:3967-3976.
Brown M.C. Antidromic responses of single units from the spiral ganglion. J. Neurophysiol. 1994, 71:1835-1847.
Bruce L.L., Kingsley J., Nichols D.H., Fritzsch B. The development of vestibulocochlear efferents and cochlear afferents in mice. Int. J. Dev. Neurosci. 1997, 15:671-692.
Bulankina A.V., Moser T. Neural circuit development in the mammalian cochlea. Physiol. (Bethesda) 2012, 27:100-112.
Buran B.N., Strenzke N., Neef A., Gundelfinger E.D., Moser T., Liberman M.C. Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons. J. Neurosci. 2010, 30:7587-7597.
Chen P., Segil N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 1999, 126:1581-1590.
Choquet D., Triller A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nat. Rev. Neurosci. 2003, 4:251-265.
Coate T.M., Raft S., Zhao X., Ryan A.K., Crenshaw E.B., Kelley M.W. Otic mesenchyme cells regulate spiral ganglion axon fasciculation through a Pou3f4/EphA4 signaling pathway. Neuron 2012, 73:49-63.
Cole L.K., Le Roux I., Nunes F., Laufer E., Lewis J., Wu D.K. Sensory organ generation in the chicken inner ear: contributions of bone morphogenetic protein 4, serrate1, and lunatic fringe. J. Comp. Neurol. 2000, 424:509-520.
D'Amico-Martel A., Noden D.M. Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am. J. Anat. 1983, 166:445-468.
de Kok Y.J., van der Maarel S.M., Bitner-Glindzicz M., Huber I., Monaco A.P., Malcolm S., Pembrey M.E., Ropers H.H., Cremers F.P. Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science 1995, 267:685-688.
Defourny J., Lallemend F., Malgrange B. Structure and development of cochlear afferent innervation in mammals. American journal of physiology. Cell Physiol. 2011, 301:C750-C761.
Defourny J., Poirrier A.L., Lallemend F., Mateo Sanchez S., Neef J., Vanderhaeghen P., Soriano E., Peuckert C., Kullander K., Fritzsch B., Nguyen L., Moonen G., Moser T., Malgrange B. Ephrin-A5/EphA4 signalling controls specific afferent targeting to cochlear hair cells. Nat. Commun. 2013, 4:1438.
Dick O., tom Dieck S., Altrock W.D., Ammermuller J., Weiler R., Garner C.C., Gundelfinger E.D., Brandstatter J.H. The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 2003, 37:775-786.
Driver E.C., Kelley M.W. Specification of cell fate in the mammalian cochlea. Birth Defects Res. C Embryo Today 2009, 87:212-221.
Duncan J.S., Fritzsch B. Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS One 2013, 8:e62046.
Duncan J.S., Lim K.C., Engel J.D., Fritzsch B. Limited inner ear morphogenesis and neurosensory development are possible in the absence of GATA3. Int. J. Dev. Biol. 2011, 55:297-303.
Durruthy-Durruthy R., Gottlieb A., Hartman B.H., Waldhaus J., Laske R.D., Altman R., Heller S. Reconstruction of the mouse otocyst and early neuroblast lineage at single-cell resolution. Cell 2014, 157:964-978.
Echteler S.M. Developmental segregation in the afferent projections to mammalian auditory hair cells. Proc. Natl. Acad. Sci. U. S. A. 1992, 89:6324-6327.
Echteler S.M., Nofsinger Y.C. Development of ganglion cell topography in the postnatal cochlea. J. Comp. Neurol. 2000, 425:436-446.
Engel J., Braig C., Ruttiger L., Kuhn S., Zimmermann U., Blin N., Sausbier M., Kalbacher H., Munkner S., Rohbock K., Ruth P., Winter H., Knipper M. Two classes of outer hair cells along the tonotopic axis of the cochlea. Neuroscience 2006, 143:837-849.
Ernfors P., Van De Water T., Loring J., Jaenisch R. Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 1995, 14:1153-1164.
Evsen L., Sugahara S., Uchikawa M., Kondoh H., Wu D.K. Progression of neurogenesis in the inner ear requires inhibition of Sox2 transcription by neurogenin1 and neurod1. J. Neurosci. 2013, 33:3879-3890.
Ernfors P., Duan M.L., ElShamy W.M., Canlon B. Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nat. Med. 1996, 2:463-467.
Farinas I., Jones K.R., Tessarollo L., Vigers A.J., Huang E., Kirstein M., de Caprona D.C., Coppola V., Backus C., Reichardt L.F., Fritzsch B. Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J. Neurosci. 2001, 21:6170-6180.
Fekete D.M., Campero A.M. Axon guidance in the inner ear. Int. J. Dev. Biol. 2007, 51:549-556.
Flores E.N., Duggan A., Madathany T., Hogan A.K., Marquez F.G., Kumar G., Seal R.P., Edwards R.H., Liberman M.C., Garcia-Anoveros J. A non-canonical pathway from cochlea to brain signals tissue-damaging noise. Curr. Biol. 2015, 25:606-612.
Frank T., Rutherford M.A., Strenzke N., Neef A., Pangrsic T., Khimich D., Fejtova A., Gundelfinger E.D., Liberman M.C., Harke B., Bryan K.E., Lee A., Egner A., Riedel D., Moser T. Bassoon and the synaptic ribbon organize Ca(2)+ channels and vesicles to add release sites and promote refilling. Neuron 2010, 68:724-738.
Freyer L., Morrow B.E. Canonical Wnt signaling modulates Tbx1, Eya1, and Six1 expression, restricting neurogenesis in the otic vesicle. Dev. Dyn. 2010, 239:1708-1722.
Freyer L., Aggarwal V., Morrow B.E. Dual embryonic origin of the mammalian otic vesicle forming the inner ear. Development 2011, 138:5403-5414.
Friedman H.V., Bresler T., Garner C.C., Ziv N.E. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 2000, 27:57-69.
Friedman R.A., Makmura L., Biesiada E., Wang X., Keithley E.M. Eya1 acts upstream of Tbx1, neurogenin 1, neuroD and the neurotrophins BDNF and NT-3 during inner ear development. Mech. Dev. 2005, 122:625-634.
Fritzsch B., Silos-Santiago I.I., Bianchi L.M., Farinas I.I. Effects of neurotrophin and neurotrophin receptor disruption on the afferent inner ear innervation. Semin. Cell Dev. Biol. 1997, 8:277-284.
Fritzsch B., Tessarollo L., Coppola E., Reichardt L.F. Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance. Prog. Brain Res. 2004, 146:265-278.
Fritzsch B., Pan N., Jahan I., Elliott K.L. Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm. Cell Tissue Res. 2015, 361:7-24.
Fritzsch B., Dillard M., Lavado A., Harvey N.L., Jahan I. Canal cristae growth and fiber extension to the outer hair cells of the mouse ear require Prox1 activity. PloS One 2010, 5:e9377.
Fritzsch B., Matei V.A., Nichols D.H., Bermingham N., Jones K., Beisel K.W., Wang V.Y. Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Dev. Dyn. 2005, 233:570-583.
Froud K.E., Wong A.C., Cederholm J.M., Klugmann M., Sandow S.L., Julien J.P., Ryan A.F., Housley G.D. Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier. Nat. Commun. 2015, 6:7115.
Fukui H., Wong H.T., Beyer L.A., Case B.G., Swiderski D.L., Di Polo A., Ryan A.F., Raphael Y. BDNF gene therapy induces auditory nerve survival and fiber sprouting in deaf Pou4f3 mutant mice. Sci. Rep. 2012, 2:838.
Furness D.N., Lawton D.M. Comparative distribution of glutamate transporters and receptors in relation to afferent innervation density in the mammalian cochlea. J. Neurosci. 2003, 23:11296-11304.
Goutman J.D., Glowatzki E. Time course and calcium dependence of transmitter release at a single ribbon synapse. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:16341-16346.
Gu C., Rodriguez E.R., Reimert D.V., Shu T., Fritzsch B., Richards L.J., Kolodkin A.L., Ginty D.D. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev. Cell 2003, 5:45-57.
Gillespie L.N., Zanin M.P., Shepherd R.K. Cell-based neurotrophin treatment supports long-term auditory neuron survival in the deaf guinea pig. J. Control. Release 2015, 198:26-34.
Hansen M.R., Zha X.M., Bok J., Green S.H. Multiple distinct signal pathways, including an autocrine neurotrophic mechanism, contribute to the survival-promoting effect of depolarization on spiral ganglion neurons in vitro. J. Neurosci. 2001, 21:2256-2267.
Hansen M.R., Vijapurkar U., Koland J.G., Green S.H. Reciprocal signaling between spiral ganglion neurons and Schwann cells involves neuregulin and neurotrophins. Hear. Res. 2001, 161:87-98.
Haugas M., Lillevali K., Salminen M. Defects in sensory organ morphogenesis and generation of cochlear hair cells in Gata3-deficient mouse embryos. Hear. Res. 2012, 283:151-161.
Heidrych P., Zimmermann U., Kuhn S., Franz C., Engel J., Duncker S.V., Hirt B., Pusch C.M., Ruth P., Pfister M., Marcotti W., Blin N., Knipper M. Otoferlin interacts with myosin VI: implications for maintenance of the basolateral synaptic structure of the inner hair cell. Hum. Mol. Genet. 2009, 18:2779-2790.
Hemond S.G., Morest D.K. Tropic effects of otic epithelium on cochleo-vestibular ganglion fiber growth in vitro. Anat. Record 1992, 232:273-284.
Huang E.J., Liu W., Fritzsch B., Bianchi L.M., Reichardt L.F., Xiang M. Brn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons. Development 2001, 128:2421-2432.
Huang L.C., Thorne P.R., Housley G.D., Montgomery J.M. Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development 2007, 134:2925-2933.
Huang L.C., Barclay M., Lee K., Peter S., Housley G.D., Thorne P.R., Montgomery J.M. Synaptic profiles during neurite extension, refinement and retraction in the developing cochlea. Neural Dev. 2012, 7:38.
Jagger D.J., Housley G.D. Membrane properties of type II spiral ganglion neurones identified in a neonatal rat cochlear slice. J. Physiol. 2003, 552:525-533.
Jahan I., Kersigo J., Pan N., Fritzsch B. Neurod1 regulates survival and formation of connections in mouse ear and brain. Cell Tissue Res. 2010, 341:95-110.
Johnson S.L., Forge A., Knipper M., Munkner S., Marcotti W. Tonotopic variation in the calcium dependence of neurotransmitter release and vesicle pool replenishment at mammalian auditory ribbon synapses. J. Neurosci. 2008, 28:7670-7678.
Johnson S.L., Kennedy H.J., Holley M.C., Fettiplace R., Marcotti W. The resting transducer current drives spontaneous activity in prehearing mammalian cochlear inner hair cells. J. Neurosci. 2012, 32:10479-10483.
Johnson S.L., Wedemeyer C., Vetter D.E., Adachi R., Holley M.C., Elgoyhen A.B., Marcotti W. Cholinergic efferent synaptic transmission regulates the maturation of auditory hair cell ribbon synapses. Open Biol. 2013, 3:130163.
Johnson S.L., Kuhn S., Franz C., Ingham N., Furness D.N., Knipper M., Steel K.P., Adelman J.P., Holley M.C., Marcotti W. Presynaptic maturation in auditory hair cells requires a critical period of sensory-independent spiking activity. Proc. Natl. Acad. Sci. U. S. A. 2013, 110:8720-8725.
Johnson S.L., Eckrich T., Kuhn S., Zampini V., Franz C., Ranatunga K.M., Roberts T.P., Masetto S., Knipper M., Kros C.J., Marcotti W. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells. Nat. Neurosci. 2011, 14:711-717.
Jones T.A., Leake P.A., Snyder R.L., Stakhovskaya O., Bonham B. Spontaneous discharge patterns in cochlear spiral ganglion cells before the onset of hearing in cats. J. Neurophysiol. 2007, 98:1898-1908.
Kandler K., Clause A., Noh J. Tonotopic reorganization of developing auditory brainstem circuits. Nat. Neurosci. 2009, 12:711-717.
Kariya S., Okano M., Maeda Y., Hirai H., Higaki T., Noyama Y., Haruna T., Nishihira J., Nishizaki K. Role of macrophage migration inhibitory factor in age-related hearing loss. Neuroscience 2014, 279:132-138.
Kennedy H.J. New developments in understanding the mechanisms and function of spontaneous electrical activity in the developing mammalian auditory system. J. Assoc. Res. Otolaryngol. 2012, 13:437-445.
Kersigo J., Fritzsch B. Inner ear hair cells deteriorate in mice engineered to have no or diminished innervation. Front. Aging Neurosci. 2015, 7:33.
Khimich D., Nouvian R., Pujol R., Tom Dieck S., Egner A., Gundelfinger E.D., Moser T. Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature 2005, 434:889-894.
Kiernan A.E., Pelling A.L., Leung K.K., Tang A.S., Bell D.M., Tease C., Lovell-Badge R., Steel K.P., Cheah K.S. Sox2 is required for sensory organ development in the mammalian inner ear. Nature 2005, 434:1031-1035.
Kim W.Y., Fritzsch B., Serls A., Bakel L.A., Huang E.J., Reichardt L.F., Barth D.S., Lee J.E. NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 2001, 128:417-426.
Knipper M., Kopschall I., Rohbock K., Kopke A.K., Bonk I., Zimmermann U., Zenner H. Transient expression of NMDA receptors during rearrangement of AMPA-receptor-expressing fibers in the developing inner ear. Cell Tissue Res. 1997, 287:23-41.
Koo S.K., Hill J.K., Hwang C.H., Lin Z.S., Millen K.J., Wu D.K. Lmx1a maintains proper neurogenic, sensory, and non-sensory domains in the mammalian inner ear. Dev. Biol. 2009, 333:14-25.
Koundakjian E.J., Appler J.L., Goodrich L.V. Auditory neurons make stereotyped wiring decisions before maturation of their targets. J. Neurosci. 2007, 27:14078-14088.
Kurima K., Peters L.M., Yang Y., Riazuddin S., Ahmed Z.M., Naz S., Arnaud D., Drury S., Mo J., Makishima T., Ghosh M., Menon P.S., Deshmukh D., Oddoux C., Ostrer H., Khan S., Riazuddin S., Deininger P.L., Hampton L.L., Sullivan S.L., Battey J.F., Keats B.J., Wilcox E.R., Friedman T.B., Griffith A.J. Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat. Genet. 2002, 30:277-284.
Landry T.G., Fallon J.B., Wise A.K., Shepherd R.K. Chronic neurotrophin delivery promotes ectopic neurite growth from the spiral ganglion of deafened cochleae without compromising the spatial selectivity of cochlear implants. J. Comp. Neurol. 2013, 521:2818-2832.
Lawoko-Kerali G., Rivolta M.N., Lawlor P., Cacciabue-Rivolta D.I., Langton-Hewer C., van Doorninck J.H., Holley M.C. GATA3 and NeuroD distinguish auditory and vestibular neurons during development of the mammalian inner ear. Mech. Dev. 2004, 121:287-299.
Lee A.M., Navaratnam D., Ichimiya S., Greene M.I., Davis J.G. Cloning of m-ehk2 from the murine inner ear, an eph family receptor tyrosine kinase expressed in the developing and adult cochlea. DNA Cell Biol. 1996, 15:817-825.
Lee H.K., Song M.H., Kang M., Lee J.T., Kong K.A., Choi S.J., Lee K.Y., Venselaar H., Vriend G., Lee W.S., Park H.J., Kwon T.K., Bok J., Kim U.K. Clinical and molecular characterizations of novel POU3F4 mutations reveal that DFN3 is due to null function of POU3F4 protein. Physiol. Genomics 2009, 39:195-201.
Lewis A.E., Vasudevan H.N., O'Neill A.K., Soriano P., Bush J.O. The widely used Wnt1-Cre transgene causes developmental phenotypes by ectopic activation of Wnt signaling. Dev. Biol. 2013, 379:229-234.
Liberman L.D., Wang H., Liberman M.C. Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. J. Neurosci. 2011, 31:801-808.
Liberman M.C. Morphological differences among radial afferent fibers in the cat cochlea: an electron-microscopic study of serial sections. Hear. Res. 1980, 3:45-63.
Liberman M.C., Brown M.C. Physiology and anatomy of single olivocochlear neurons in the cat. Hear. Res. 1986, 24:17-36.
Lillevali K., Haugas M., Matilainen T., Pussinen C., Karis A., Salminen M. Gata3 is required for early morphogenesis and Fgf10 expression during otic development. Mech. Dev. 2006, 123:415-429.
Liu M., Pereira F.A., Price S.D., Chu M.J., Shope C., Himes D., Eatock R.A., Brownell W.E., Lysakowski A., Tsai M.J. Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev. 2000, 14:2839-2854.
Locher H., Frijns J.H., van Iperen L., de Groot J.C., Huisman M.A., Chuva de Sousa Lopes S.M. Neurosensory development and cell fate determination in the human cochlea. Neural Dev. 2013, 8:20.
Ma Q., Anderson D.J., Fritzsch B. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J. Assoc. Res. Otolaryngol. - JARO 2000, 1:129-143.
Ma Q., Chen Z., del Barco Barrantes I., de la Pompa J.L., Anderson D.J. neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 1998, 20:469-482.
Mao Y., Reiprich S., Wegner M., Fritzsch B. Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear. PLoS One 2014, 9:e94580.
Marcotti W., Johnson S.L., Rusch A., Kros C.J. Sodium and calcium currents shape action potentials in immature mouse inner hair cells. J. Physiol. 2003, 552:743-761.
Marcotti W., Erven A., Johnson S.L., Steel K.P., Kros C.J. Tmc1 is necessary for normal functional maturation and survival of inner and outer hair cells in the mouse cochlea. J. Physiol. 2006, 574:677-698.
Marillat V., Cases O., Nguyen-Ba-Charvet K.T., Tessier-Lavigne M., Sotelo C., Chedotal A. Spatiotemporal expression patterns of slit and robo genes in the rat brain. J. Comp. Neurol. 2002, 442:130-155.
Matei V., Pauley S., Kaing S., Rowitch D., Beisel K.W., Morris K., Feng F., Jones K., Lee J., Fritzsch B. Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev. Dyn. 2005, 234:633-650.
Matilainen T., Haugas M., Kreidberg J.A., Salminen M. Analysis of Netrin 1 receptors during inner ear development. Int. J. Dev. Biol. 2007, 51:409-413.
Mellado Lagarde M.M., Cox B.C., Fang J., Taylor R., Forge A., Zuo J. Selective ablation of pillar and deiters' cells severely affects cochlear postnatal development and hearing in mice. J. Neurosci. 2013, 33:1564-1576.
Meyer A.C., Frank T., Khimich D., Hoch G., Riedel D., Chapochnikov N.M., Yarin Y.M., Harke B., Hell S.W., Egner A., Moser T. Tuning of synapse number, structure and function in the cochlea. Nat. Neurosci. 2009, 12:444-453.
Michna M., Knirsch M., Hoda J.C., Muenkner S., Langer P., Platzer J., Striessnig J., Engel J. Cav1.3 (alpha1D) Ca2+ currents in neonatal outer hair cells of mice. J. Physiol. 2003, 553:747-758.
Miko I.J., Henkemeyer M., Cramer K.S. Auditory brainstem responses are impaired in EphA4 and ephrin-B2 deficient mice. Hear. Res. 2008, 235:39-46.
Minowa O., Ikeda K., Sugitani Y., Oshima T., Nakai S., Katori Y., Suzuki M., Furukawa M., Kawase T., Zheng Y., Ogura M., Asada Y., Watanabe K., Yamanaka H., Gotoh S., Nishi-Takeshima M., Sugimoto T., Kikuchi T., Takasaka T., Noda T. Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Science 1999, 285:1408-1411.
Miyazaki N., Furuyama T., Takeda N., Inoue T., Kubo T., Inagaki S. Expression of mouse semaphorin H mRNA in the inner ear of mouse fetuses. Neurosci. Lett. 1999, 261:127-129.
Monzack E.L., Cunningham L.L. Lead roles for supporting actors: critical functions of inner ear supporting cells. Hear. Res. 2013, 303:20-29.
Morris J.K., Maklad A., Hansen L.A., Feng F., Sorensen C., Lee K.F., Macklin W.B., Fritzsch B. A disorganized innervation of the inner ear persists in the absence of ErbB2. Brain Res. 2006, 1091:186-199.
Morsli H., Choo D., Ryan A., Johnson R., Wu D.K. Development of the mouse inner ear and origin of its sensory organs. J. Neurosci. 1998, 18:3327-3335.
Moser T., Brandt A., Lysakowski A. Hair cell ribbon synapses. Cell Tissue Res. 2006, 326:347-359.
Mostafapour S.P., Cochran S.L., Del Puerto N.M., Rubel E.W. Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. J. Comp. Neurol. 2000, 426:561-571.
Mullen L.M., Pak K.K., Chavez E., Kondo K., Brand Y., Ryan A.F. Ras/p38 and PI3K/Akt but not Mek/Erk signaling mediate BDNF-induced neurite formation on neonatal cochlear spiral ganglion explants. Brain Res. 2012, 1430:25-34.
Mulvaney J.F., Yatteau A., Sun W.W., Jacques B., Takubo K., Suda T., Yamada W., Dabdoub A. Secreted factor R-Spondin 2 is involved in refinement of patterning of the mammalian cochlea. Dev. Dyn. 2013, 242:179-188.
Murakami Y., Suto F., Shimizu M., Shinoda T., Kameyama T., Fujisawa H. Differential expression of plexin-A subfamily members in the mouse nervous system. Dev. Dyn. 2001, 220:246-258.
Nakamura H., O'Leary D.D. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order. J. Neurosci. 1989, 9:3776-3795.
Nichols D.H., Pauley S., Jahan I., Beisel K.W., Millen K.J., Fritzsch B. Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell Tissue Res. 2008, 334:339-358.
Niehrs C. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 2012, 13:767-779.
Pan N., Jahan I., Kersigo J., Kopecky B., Santi P., Johnson S., Schmitz H., Fritzsch B. Conditional deletion of Atoh1 using Pax2-Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti. Hear. Res. 2011, 275:66-80.
Parzefall T., Shivatzki S., Lenz D.R., Rathkolb B., Ushakov K., Karfunkel D., Shapira Y., Wolf M., Mohr M., Wolf E., Sabrautzki S., de Angelis M.H., Frydman M., Brownstein Z., Avraham K.B. Cytoplasmic Mislocalization of POU3F4 due to novel mutations leads to deafness in humans and mice. Hum. Mutat. 2013, 34:1102-1110.
Pechriggl E.J., Bitsche M., Glueckert R., Rask-Andersen H., Blumer M.J., Schrott-Fischer A., Fritsch H. Development of the innervation of the human inner ear. Dev. Neurobiol. 2015, 75:683-702.
Perkins R.E., Morest D.K. A study of cochlear innervation patterns in cats and rats with the Golgi method and Nomarkski Optics. J. Comp. Neurol. 1975, 163:129-158.
Pickles J.O. Expression of Ephs and ephrins in developing mouse inner ear. Hear. Res. 2003, 178:44-51.
Pirvola U., Arumae U., Moshnyakov M., Palgi J., Saarma M., Ylikoski J. Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hear. Res. 1994, 75:131-144.
Platzer J., Engel J., Schrott-Fischer A., Stephan K., Bova S., Chen H., Zheng H., Striessnig J. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 2000, 102:89-97.
Puligilla C., Feng F., Ishikawa K., Bertuzzi S., Dabdoub A., Griffith A.J., Fritzsch B., Kelley M.W. Disruption of fibroblast growth factor receptor 3 signaling results in defects in cellular differentiation, neuronal patterning, and hearing impairment. Dev. Dyn. 2007, 236:1905-1917.
Raft S., Groves A.K. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res. 2015, 359:315-332.
Raft S., Nowotschin S., Liao J., Morrow B.E. Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development 2004, 131:1801-1812.
Raft S., Koundakjian E.J., Quinones H., Jayasena C.S., Goodrich L.V., Johnson J.E., Segil N., Groves A.K. Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development 2007, 134:4405-4415.
Riccomagno M.M., Takada S., Epstein D.J. Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev. 2005, 19:1612-1623.
Robertson D., Sellick P.M., Patuzzi R. The continuing search for outer hair cell afferents in the guinea pig spiral ganglion. Hear. Res. 1999, 136:151-158.
Roux I., Wersinger E., McIntosh J.M., Fuchs P.A., Glowatzki E. Onset of cholinergic efferent synaptic function in sensory hair cells of the rat cochlea. J. Neurosci. 2011, 31:15092-15101.
Roux I., Hosie S., Johnson S.L., Bahloul A., Cayet N., Nouaille S., Kros C.J., Petit C., Safieddine S. Myosin VI is required for the proper maturation and function of inner hair cell ribbon synapses. Hum. Mol. Genet. 2009, 18:4615-4628.
Roux I., Safieddine S., Nouvian R., Grati M., Simmler M.C., Bahloul A., Perfettini I., Le Gall M., Rostaing P., Hamard G., Triller A., Avan P., Moser T., Petit C. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 2006, 127:277-289.
Ruben R.J. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol. 1967, (Suppl. 220):1-44.
Rueda J., de la Sen C., Juiz J.M., Merchan J.A. Neuronal loss in the spiral ganglion of young rats. Acta Otolaryngol. 1987, 104:417-421.
Ruel J., Emery S., Nouvian R., Bersot T., Amilhon B., Van Rybroek J.M., Rebillard G., Lenoir M., Eybalin M., Delprat B., Sivakumaran T.A., Giros B., El Mestikawy S., Moser T., Smith R.J., Lesperance M.M., Puel J.L. Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. Am. J. Hum. Genet. 2008, 83:278-292.
Rusch A., Erway L.C., Oliver D., Vennstrom B., Forrest D. Thyroid hormone receptor beta-dependent expression of a potassium conductance in inner hair cells at the onset of hearing. Proc. Natl. Acad. Sci. U. S. A. 1998, 95:15758-15762.
Ruthazer E.S., Cline H.T. Insights into activity-dependent map formation from the retinotectal system: a middle-of-the-brain perspective. J. Neurobiol. 2004, 59:134-146.
Rejali D., Lee V.A., Abrashkin K.A., Humayun N., Swiderski D.L., Raphael Y. Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons. Hear. Res. 2007, 228:180-187.
Safieddine S., Wenthold R.J. SNARE complex at the ribbon synapses of cochlear hair cells: analysis of synaptic vesicle- and synaptic membrane-associated proteins. Eur. J. Neurosci. 1999, 11:803-812.
Safieddine S., El-Amraoui A., Petit C. The auditory hair cell ribbon synapse: from assembly to function. Annu. Rev. Neurosci. 2012, 35:509-528.
Sandell L.L., Butler Tjaden N.E., Barlow A.J., Trainor P.A. Cochleovestibular nerve development is integrated with migratory neural crest cells. Dev. Biol. 2014, 385:200-210.
Schecterson L.C., Bothwell M. Neurotrophin and neurotrophin receptor mRNA expression in developing inner ear. Hear. Res. 1994, 73:92-100.
Schild C., Prera E., Lublinghoff N., Arndt S., Aschendorff A., Birkenhager R. Novel mutation in the homeobox domain of transcription factor POU3F4 associated with profound sensorineural hearing loss. Otol. Neurotol. 2011, 32:690-694.
Schimmang T., Tan J., Muller M., Zimmermann U., Rohbock K., Kopschall I., Limberger A., Minichiello L., Knipper M. Lack of Bdnf and TrkB signalling in the postnatal cochlea leads to a spatial reshaping of innervation along the tonotopic axis and hearing loss. Development 2003, 130:4741-4750.
Seal R.P., Akil O., Yi E., Weber C.M., Grant L., Yoo J., Clause A., Kandler K., Noebels J.L., Glowatzki E., Lustig L.R., Edwards R.H. Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. Neuron 2008, 57:263-275.
Sendin G., Bulankina A.V., Riedel D., Moser T. Maturation of ribbon synapses in hair cells is driven by thyroid hormone. J. Neurosci. 2007, 27:3163-3173.
Sendin G., Bourien J., Rassendren F., Puel J.L., Nouvian R. Spatiotemporal pattern of action potential firing in developing inner hair cells of the mouse cochlea. Proc. Natl. Acad. Sci. U. S. A. 2014, 111:1999-2004.
Simmons D.D. A transient afferent innervation of outer hair cells in the postnatal cochlea. Neuroreport 1994, 5:1309-1312.
Simmons D.D. Development of the inner ear efferent system across vertebrate species. J. Neurobiol. 2002, 53:228-250.
Simmons D.D., Mansdorf N.B., Kim J.H. Olivocochlear innervation of inner and outer hair cells during postnatal maturation: evidence for a waiting period. J. Comp. Neurol. 1996, 370:551-562.
Sly D.J., Hampson A.J., Minter R.L., Heffer L.F., Li J., Millard R.E., Winata L., Niasari A., O'Leary S.J. Brain-derived neurotrophic factor modulates auditory function in the hearing cochlea. J. Assoc. Res. Otolaryngol. 2012, 13:1-16.
Sobkowicz H.M., Rose J.E., Scott G.E., Slapnick S.M. Ribbon synapses in the developing intact and cultured organ of Corti in the mouse. J. Neurosci. 1982, 2:942-957.
Sobkowicz H.M., Rose J.E., Scott G.L., Levenick C.V. Distribution of synaptic ribbons in the developing organ of Corti. J. Neurocytol. 1986, 15:693-714.
Stankovic K., Rio C., Xia A., Sugawara M., Adams J.C., Liberman M.C., Corfas G. Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear. J. Neurosci. 2004, 24:8651-8661.
Steel K.P., Barkway C. Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development 1989, 107:453-463.
Stellwagen D., Shatz C.J. An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 2002, 33:357-367.
Strutz J. Efferent innervation of the cochlea. Ann. Otol. Rhinol. Laryngol. 1981, 90:158-160.
Shinohara T., Bredberg G., Ulfendahl M., Pyykko I., Olivius N.P., Kaksonen R., Lindstrom B., Altschuler R., Miller J.M. Neurotrophic factor intervention restores auditory function in deafened animals. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:1657-1660.
Staecker H., Kopke R., Malgrange B., Lefebvre P., Van de Water T.R. NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells. Neuroreport 1996, 7:889-894.
Thiers F.A., Nadol J.B., Liberman M.C. Reciprocal synapses between outer hair cells and their afferent terminals: evidence for a local neural network in the mammalian cochlea. J. Assoc. Res. Otolaryngol. 2008, 9:477-489.
Tritsch N.X., Bergles D.E. Developmental regulation of spontaneous activity in the Mammalian cochlea. J. Neurosci. 2010, 30:1539-1550.
Tritsch N.X., Yi E., Gale J.E., Glowatzki E., Bergles D.E. The origin of spontaneous activity in the developing auditory system. Nature 2007, 450:50-55.
Uthaiah R.C., Hudspeth A.J. Molecular anatomy of the hair cell's ribbon synapse. J. Neurosci. 2010, 30:12387-12399.
Vandenbosch R., Chocholova E., Robe P.A., Wang Y., Lambert C., Moonen G., Lallemend F., Malgrange B., Hadjab S. A role for the canonical nuclear factor-kappaB pathway in coupling neurotrophin-induced differential survival of developing spiral ganglion neurons. Front. Cell Neurosci. 2013, 7:242.
Vitelli F., Viola A., Morishima M., Pramparo T., Baldini A., Lindsay E. TBX1 is required for inner ear morphogenesis. Hum. Mol. Genet. 2003, 12:2041-2048.
Walsh M.K., Lichtman J.W. In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination. Neuron 2003, 37:67-73.
Wan G., Gomez-Casati M.E., Gigliello A.R., Liberman M.C., Corfas G. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. Elife 2014, 3.
Wang S.Z., Ibrahim L.A., Kim Y.J., Gibson D.A., Leung H.C., Yuan W., Zhang K.K., Tao H.W., Ma L., Zhang L.I. Slit/Robo signaling mediates spatial positioning of spiral ganglion neurons during development of cochlear innervation. J. Neurosci. 2013, 33:12242-12254.
Webber A., Raz Y. Axon guidance cues in auditory development. Anat. Record A Discov. Mol. Cell. Evol. Biol. 2006, 288:390-396.
Weisz C., Glowatzki E., Fuchs P. The postsynaptic function of type II cochlear afferents. Nature 2009, 461:1126-1129.
Weisz C.J., Lehar M., Hiel H., Glowatzki E., Fuchs P.A. Synaptic transfer from outer hair cells to type II afferent fibers in the rat cochlea. J. Neurosci. 2012, 32:9528-9536.
Wheeler E.F., Bothwell M., Schecterson L.C., von Bartheld C.S. Expression of BDNF and NT-3 mRNA in hair cells of the organ of Corti: quantitative analysis in developing rats. Hear. Res. 1994, 73:46-56.
Wiechers B., Gestwa G., Mack A., Carroll P., Zenner H.P., Knipper M. A changing pattern of brain-derived neurotrophic factor expression correlates with the rearrangement of fibers during cochlear development of rats and mice. J. Neurosci. 1999, 19:3033-3042.
Wong A.B., Jing Z., Rutherford M.A., Frank T., Strenzke N., Moser T. Concurrent maturation of inner hair cell synaptic Ca2+ influx and auditory nerve spontaneous activity around hearing onset in mice. J. Neurosci. 2013, 33:10661-10666.
Wu D.K., Kelley M.W. Molecular mechanisms of inner ear development. Cold Spring Harb. Perspect. Biol. 2012, 4:a008409.
Xiang M., Maklad A., Pirvola U., Fritzsch B. Brn3c null mutant mice show long-term, incomplete retention of some afferent inner ear innervation. BMC Neurosci. 2003, 4:2.
Xu H., Viola A., Zhang Z., Gerken C.P., Lindsay-Illingworth E.A., Baldini A. Tbx1 regulates population, proliferation and cell fate determination of otic epithelial cells. Dev. Biol. 2007, 302:670-682.
Xu P.X., Adams J., Peters H., Brown M.C., Heaney S., Maas R. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat. Genet. 1999, 23:113-117.
Yasunaga S., Grati M., Cohen-Salmon M., El-Amraoui A., Mustapha M., Salem N., El-Zir E., Loiselet J., Petit C. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat. Genet. 1999, 21:363-369.
Yu Q., Chang Q., Liu X., Wang Y., Li H., Gong S., Ye K., Lin X. Protection of spiral ganglion neurons from degeneration using small-molecule TrkB receptor agonists. J. Neurosci. 2013, 33:13042-13052.
Yu W.M., Goodrich L.V. Morphological and physiological development of auditory synapses. Hear. Res. 2014, 311:3-16.
Yu W.M., Appler J.M., Kim Y.H., Nishitani A.M., Holt J.R., Goodrich L.V. A Gata3-Mafb transcriptional network directs post-synaptic differentiation in synapses specialized for hearing. Elife 2013, 2:e01341.
Yuan W., Zhou L., Chen J.H., Wu J.Y., Rao Y., Ornitz D.M. The mouse SLIT family: secreted ligands for ROBO expressed in patterns that suggest a role in morphogenesis and axon guidance. Dev. Biol. 1999, 212:290-306.
Zheng W., Huang L., Wei Z.B., Silvius D., Tang B., Xu P.X. The role of Six1 in mammalian auditory system development. Development 2003, 130:3989-4000.
Zhou C.Q., Lee J., Henkemeyer M.J., Lee K.H. Disruption of ephrin B/Eph B interaction results in abnormal cochlear innervation patterns. Laryngoscope 2011, 121:1541-1547.
Zilberstein Y., Liberman M.C., Corfas G. Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. J. Neurosci. 2012, 32:405-410.
Zou D., Silvius D., Fritzsch B., Xu P.X. Eya1 and Six1 are essential for early steps of sensory neurogenesis in mammalian cranial placodes. Development 2004, 131:5561-5572.