[en] The cyanobacteria are photosynthetic prokaryotes of significant ecological and biotechnological interest, since they strongly contribute to primary production and are a rich source of bioactive compounds. In eutrophic fresh and brackish waters, their mass occurrences (water blooms) are often toxic and constitute a high potential risk for human health. Therefore, rapid and reliable identification of cyanobacterial species in complex environmental samples is important. Here we describe the development and validation of a microarray for the identification of cyanobacteria in aquatic environments. Our approach is based on the use of a ligation detection reaction coupled to a universal array. Probes were designed for detecting 19 cyanobacterial groups including Anabaena/Aphanizomenon, Calothrix, Cylindrospermopsis, Cylindrospermum, Gloeothece, halotolerants, Leptolyngbya, Palau Lyngbya, Microcystis, Nodularia, Nostoc, Planktothrix, Antarctic Phormidium, Prochlorococcus, Spirulina, Synechococcus, Synechocystis, Trichodesmium, and Woronichinia. These groups were identified based on an alignment of over 300 cyanobacterial 16S rRNA sequences. For validation of the microarrays, 95 samples (24 axenic strains from culture collections, 27 isolated strains, and 44 cloned fragments recovered from environmental samples) were tested. The results demonstrated a high discriminative power and sensitivity to 1 fmol of the PCR-amplified 16S rRNA gene. Accurate identification of target strains was also achieved with unbalanced mixes of PCR amplicons from different cyanobacteria and an environmental sample. Our universal array method shows great potential for rapid and reliable identification of cyanobacteria. It can be easily adapted to future development and could thus be applied both in research and environmental monitoring.
Castiglioni, Bianca; Italian National Research Council (Milan) > Institute of Agricultural Biology and Biotechnology
Rizzi, Ermann; Italian National Research Council > Institute of Biomedical Technologies
Frosini, Andrea; University of Milan > Department of Biomedical Sciences and Technology
Sivonen, Kaarina
Rajaniemi, Pirjo
Rantala, Anne
Mugnai, Maria Angela
Ventura, Stefano
Wilmotte, Annick ; Université de Liège - ULiège > Département des sciences de la vie > Enzymologie
Boutte, Christophe
Grubisic, Stana ; Université de Liège - ULiège > Services administratifs généraux > Protection et hygiène du travail (SUPHT)
Balthasart, Pierre ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement > Département des sciences et gestion de l'environnement
Burja, A. M., B. Banaigs, E. Abou-Mansour, J. G. Burgess, and P. C. Wright. 2001. Marine cyanobacteria - a prolific source of natural products. Tetrahedron 57:9347-9377,
Busti, E., R. Bordoni, B. Castiglioni, P. Monciardini, M. Sosio, S. Donadio, C. Consolandi, L. Rossi Bernardi, C. Battaglia, and G. De Bellis. 2002. Bacterial discrimination by means of a Universal Array approach mediated by LDR (ligase detection reaction). BMC Microbiol. 2:27.
Castenholz, R. W. 2001. Phylum BX. Cyanobacteria. Oxygenic photosynthetic bacteria, p. 473-599. In D. R. Boone and R. W. Castenholz (ed.), Bergey's manual of systematic bacteriology, vol. 1. Springer-Verlag, New York, N.Y.
Chen, J., M. A. Iannone, M. S. Li, J. D. Taylor, P. Rivers, A. J. Nelsen, K. A. Slentz-Kesler, A. Roses, and M. P. Weiner. 2000. A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension. Genome Res. 10:549-557.
Consolandi, C., A. Frosini, C. Pera, G. B. Ferrara, R. Bordoni, B. Castiglioni, E. Rizzi, A. Mezzelani, L. Rossi Bernardi, G. DeBellis, and C. Battaglia. 2004. Polymorphism analysis within the HLA-A locus by universal oligonucleotide array. Hum. Mutat. 24:428-434.
Edwards, U., T. Rogall, H. Blöcker, M. Emde, and E. C. Böttger. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17:7843-7853.
Gerry, N. P., N. E. Witowski, J. Day, R. P. Hammer, G. Barany, and F. Barany. 1999. Universal DNA microarray method for multiplex detection of low abundance point mutations. J. Mol. Biol. 292:251-262.
Giovannoni, S. J., S. Turner, G. J. Olsen, S. Barns, D. J. Lane, and N. R. Pace. 1988. Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacteriol. 170:3584-3592.
Giovannoni, S. J., E. F. DeLong, T. M. Schmidt, and N. R. Pace. 1990. Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl. Environ. Microbiol. 56:2572-2575.
Gordon, D. A., J. Priscu, and S. Giovannoni. 2000. Origin and phylogeny of microbes living in permanent Antarctic lake ice. Microb. Ecol. 39:197-202.
Guschin, D. Y., B. K. Mobarry, D. Proudnikov, D. A. Stahl, B. E. Rittmann, and A. D. Mirzabekov. 1997. Oligonucieotide microchips as genosensors for determinative and environmental studies in microbiology. Appl. Environ. Microbiol. 63:2397-2402.
Komarek, J., and K. Anagnostidis. 1999. Cyanoprokaryota. 1. Teil: Chroococcales, p. 136-224. In H. Ettl, G. Gärtner, H. Heynig, and D. Mollenhauer (ed.), Süsswasserflora von Mitteleuropa. Band 19/1. Gustav Fisher Verl, Jena, Germany.
Kuiper-Goodman, T., I. Falconer, and J. Fitzgerald. 1999. Human health aspects, p. 113-153. In I. Chorus and J. Bertram (ed.), Toxic cyanobacteria in water: a guide to public health significance, monitoring and management. E & FN Spon, London, United Kingdom.
Lepere, C., A. Wilmotte, and B. Meyer. 2000. Molecular diversity of Microcystis strains (Cyanophyceae, Chroococcales) based on 16S rDNA sequences. Syst. Geogr. Plants 70:275-283.
Loy, A., A. Lehner, N. Lee, J. Adamczyk, H. Meier, J. Ernst, K. H. Schleifer, and M. Wagner. 2002. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol. 68:5064-5081.
Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A. W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, K. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode, and K. H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32:1363-1371.
Matsunaga, T., H. Nakayama, M. Okochi, and H. Takeyama. 2001. Fluorescent detection of cyanobacterial DNA using bacterial magnetic particles on a MAG-microarray. Biotechnol. Bioeng. 73:400-405.
Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2:317-322.
Nübel, U., F. Garcia-Pichel, and G. Muyzer. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63:3327-3332.
Peplies, J., F. O. Glockner, and R. Amann. 2003. Optimization strategies for DNA microarray-based detection of bacteria with 16S rRNA-targeting oligonucleotide probes. Appl. Environ. Microbiol. 69:1397-1407.
Rudi, K., O. M. Skulberg, R. Skulberg, and K. S. Jakobsen. 2000. Application of sequence-specific labeled 16S rRNA gene oligonucleotide probes for genetic profiling of cyanobacterial abundance and diversity by array hybridization. Appl. Environ. Microbiol. 66:4004-4011.
Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
Sivonen, K., and G. Jones. 1999. Cyanobacterial toxins, p. 41-111. In I. Chorus and J. Bertram (ed.). Toxic cyanobacteria in water: a guide to public health significance, monitoring and management. E & FN Spon, London, United Kingdom.
Small, J., D. R. Call, F. J. Brockman, T. M. Straub, and D. P. Chandler. 2001. Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl. Environ. Microbiol. 67:4708-4716.
Taton, A., S. Grubisic, E. Brambilla, R. De Wit, and A. Wilmotte. 2003. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl. Environ. Microbiol. 69:5157-5169.
Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.
von Wintzingerode, F., U. B. Gobel, and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21:213-229.
Wang, R. F., M. L. Beggs, L. H. Robertson, and C. E. Cerniglia. 2002. Design and evaluation of oligohucleotide-microarray method for the detection of human intestinal bacteria in fecal samples. FEMS Microbiol. Lett. 213:175-182.
Wilmotte, A. 1994. Molecular evolution and taxonomy of the cyanobacteria, p. 1-25. In D. A. Bryant (ed.), The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Wilmotte, A., and M. Herdmann. 2001. Phylogenetic relationships among cyanobacteria based on 16S rRNA sequences, p. 487-493. In D. R. Boone and R. W. Castenholz (ed.), Bergey's manual of systematic bacteriology, vol. 1. Springer, New York, N.Y.
Wilson, K. H., W. J. Wilson, J. L. Radosevich, T. Z. DeSantis, V. S. Viswanathan, T. A. Kuczmarski, and G. L. Andersen. 2002. High-density microarray of small-subunit ribosomal DNA probes. Appl. Environ. Microbiol. 68:2535-2541.
Wu, L., D. K. Thompson, G. Li, R. A. Hurt, J. M. Tiedje, and J. Zhou. 2001. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol. 67:5780-5790.