[1] Hohenberg, P., Kohn, W., Inhomogeneous electron gas. Phys. Rev. 136:3B (1964), B864–B871.
[2] Kohn, W., Sham, L.J., Self-consistent equations including exchange and correlation effects. Phys. Rev. 140:4A (1965), A1133–A1138.
[3] Hedin, L., New method for calculating the one-particle green's function with application to the electron-gas problem. Phys. Rev. A, 139, 1965, 796.
[4] Onida, G., Reining, L., Rubio, A., Electronic excitations: density-functional versus many-body Green's-function approaches. Rev. Modern Phys. 74 (2002), 601–659.
[5] http://www.gnu.org/copyleft/gpl.txt.
[6] Gonze, X., Beuken, J.-M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.-M., Sindic, L., Verstraete, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, Ph., Raty, J.-Y., Allan, D.C., First-principles computation of material properties: the abinit software project. Comput. Mater. Sci. 25 (2002), 478–492.
[7] Gonze, X., Rignanese, M., Verstraete, M., Beuken, J.-M., Pouillon, Y., Caracas, R., Jollet, F., Torrent, M., Zerah, G., Mikami, M., Ghosez, Ph., Veithen, M., Raty, J.-Y., Olevano, V., Bruneval, F., Reining, L., Godby, R., Onida, G., Hamann, D.R., Allan, D.C., A brief introduction to the abinit software package. Z. Kristallogr. 220 (2005), 558–562.
[8] Gonze, X., Amadon, B., Anglade, P.-M., Beuken, J.-M., Bottin, F., Boulanger, P., Bruneval, F., Caliste, D., Caracas, R., Côté, M., Deutsch, T., Genovese, L., Ghosez, Ph., Giantomassi, M., Goedecker, S., Hamann, D.R., Hermet, P., Jollet, F., Jomard, G., Leroux, S., Mancini, M., Mazevet, S., Oliveira, M.J.T., Onida, G., Pouillon, Y., Rangel, T., Rignanese, G.-M., Sangalli, D., Shaltaf, R., Torrent, M., Verstraete, M.J., Zerah, G., Zwanziger, J.W., Abinit: First-principle approach to material and nanosystem properties. Comput. Phys. Comm. 180 (2009), 2582–2615.
[9] http://abinit.org.
[10] http://abinit.org/doc/helpfiles.
[11] http://forum.abinit.org.
[12] http://wiki.abinit.org/doku.php.
[13] Marx, D., Parrinello, M., Ab initio path integral molecular dynamics: Basic ideas. J. Chem. Phys., 104, 1996, 4077.
[14] Tuckerman, M.E., Marx, D., Klein, M.L., Parrinello, M., Efficient and general algorithms for path integral Car–Parrinello molecular dynamics. J. Chem. Phys., 104, 1996, 5579.
[15] Geneste, G., Torrent, M., Bottin, F., Loubeyre, P., Strong isotope effect in phase II of dense solid hydrogen and deuterium. Phys. Rev. Lett., 109, 2012, 155303.
[16] Geneste, G., Ottochian, A., Hermet, J., Dezanneau, G., Proton transport in barium stannate: classical, semi-classical and quantum regimes. Phys. Chem. Chem. Phys., 17, 2015, 19104.
[17] Weinan, E., Ren, W., Vanden-Eijnden, E., Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. J. Chem. Phys., 126(16), 2007, 164103.
[18] Henkelman, G., Jónsson, H., Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113:22 (2000), 9978–9985.
[19] Mills, G., Jónsson, H., Quantum and thermal effects in h 2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems. Phys. Rev. Lett., 72(7), 1994, 1124.
[20] Resta, R., Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Modern Phys. 66 (1994), 899–915.
[21] Nunes, R.W., Gonze, X., Berry-phase treatment of the homogeneous electric field perturbation in insulators. Phys. Rev. B, 63(15), 2001, 155107.
[22] Souza, I., Íñiguez, J., Vanderbilt, D., First-principles approach to insulators in finite electric fields. Phys. Rev. Lett., 89, 2002, 117602.
[23] King-Smith, R.D., Vanderbilt, D., Theory of polarization of crystalline solids. Phys. Rev. B 47:3 (1993), 1651–1654.
[24] Zwanziger, J.W., Galbraith, J., Kipouros, Y., Torrent, M., Giantomassi, M., Gonze, X., Finite homogeneous electric fields in the projector augmented wave formalism: Applications to linear and nonlinear response. Comput. Mater. Sci. 58 (2012), 113–118.
[25] D. Vanderbilt, R.D. King-Smith, Electronic polarization in the ultrasoft pseudopotential formalism, http://arxiv.org/abs/cond-mat/9801177, 1998.
[26] Nieminen, R.M., Boroński, E., Lantto, L.J., Two-component density-functional theory: Application to positron states. Phys. Rev. B, 32, 1985, 1377.
[28] Puska, M.J., Nieminen, R.M., Theory of positrons in solids and on solid surfaces. Rev. Modern Phys., 66, 1994, 841.
[29] Tuomisto, F., Makkonen, I., Defect identification in semiconductors with positron annihilation: Experiment and theory. Rev. Modern Phys., 85, 2013, 1583.
[30] Kawasuso, A., Yoshikawa, M., Itoh, H., Chiba, T., Higuchi, T., Betsuyaku, K., Redmann, F., Krause-Rehberg, R., Electron-positron momentum distributions associated with isolated silicon vacancies in 3 C-Si C. Phys. Rev. B, 72(4), 2005, 045204.
[31] Folegati, P., Makkonen, I., Ferragut, R., Puska, M.J., Analysis of electron-positron momentum spectra of metallic alloys as supported by first-principles calculations. Phys. Rev. B, 75(5), 2007, 054201.
[32] Calloni, A., Dupasquier, A., Ferragut, R., Folegati, P., Iglesias, M.M., Makkonen, I., Puska, M.J., Positron localization effects on the doppler broadening of the annihilation line: Aluminum as a case study. Phys. Rev. B, 72(5), 2005, 054112.
[33] Rauch, C., Makkonen, I., Tuomisto, F., Identifying vacancy complexes in compound semiconductors with positron annihilation spectroscopy: A case study of InN. Phys. Rev. B, 84(12), 2011, 125201.
[34] Wiktor, J., Kerbiriou, X., Jomard, G., Esnouf, S., Barthe, M.-F., Bertolus, M., Positron annihilation spectroscopy investigation of vacancy clusters in silicon carbide: Combining experiments and electronic structure calculations. Phys. Rev. B, 89(15), 2014, 155203.
[35] Wiktor, J., Barthe, M.-F., Jomard, G., Torrent, M., Freyss, M., Bertolus, M., Coupled experimental and DFT+U investigation of positron lifetimes in UO2. Phys. Rev. B, 90(18), 2014, 184101.
[37] Wiktor, J., Jomard, G., Torrent, M., Two-component density functional theory within the projector augmented-wave approach: Accurate and self-consistent computations of positron lifetimes and momentum distributions. Phys. Rev. B, 92, 2015, 125113.
[38] Holzwarth, N.A.W., Tackett, A.R., Matthews, G.E., A projector augmented wave (PAW) code for electronic structure calculations, part I: ATOMPAW for generating atom-centered functions. Comput. Phys. Comm., 135, 2001, 329.
[39] Bottin, F., Leroux, S., Knyazev, A., Zérah, G., Large-scale ab initio calculations based on three levels of parallelization. Comput. Mater. Sci. 42:2 (2008), 329–336.
[40] Levitt, A., Torrent, M., Parallel eigensolvers in plane-wave density functional theory. Comp. Phys. Comm. 187 (2015), 98–105.
[41] Wiktor, J., Jomard, G., Torrent, M., Bertolus, M., Electronic structure investigation of energetics and positron lifetimes of fully relaxed monovacancies with various charge states in 3C-SiC and 6H-SiC. Phys. Rev. B, 87, 2013, 235207.
[42] Wiktor, J., Jomard, G., Bertolus, M., Electronic structure calculations of positron lifetimes in SiC: Self-consistent schemes and relaxation effect. Nucl. Instrum. Methods, 327, 2014, 63.
[43] Becke, A.D., Edgecombe, K.E., A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92:9 (1990), 5397–5403.
[44] Savin, A., Jepsen, O., Flad, J., Andersen, O.K., Preuss, H., von Schnering, H.G., Electron localization in solid-state structures of the elements: the diamond structure. Angew. Chem., Int. Ed. Engl. 31:2 (1992), 187–188.
[45] Bader, R.F.W., Atoms in Molecules: A Quantum Theory. 1994, Oxford University Press 978-0-19-855865-1.
[46] Marques, M.A.L., Oliveira, M.J.T., Burnus, T., Libxc: A library of exchange and correlation functionals for density functional theory. Comput. Phys. Comm. 183 (2012), 2272–2281.
[47] Tran, F., Blaha, P., Accurate band gaps of semiconductors and insulators with a semilocal exchange–correlation potential. Phys. Rev. Lett., 102, 2009, 226401.
[48] Waroquiers, D., Lherbier, A., Miglio, A., Stankovski, M., Poncé, S., Oliveira, M.J.T., Giantomassi, M., Rignanese, G.-M., Gonze, X., Band widths and gaps from the Tran-Blaha functional: Comparison with many-body perturbation theory. Phys. Rev. B, 87, 2013, 075121.
[49] Bousquet, E., Spaldin, N.A., Delaney, K.T., Unexpectedly large electronic contribution to linear magnetoelectricity. Phys. Rev. Lett., 106, 2011, 107202.
[50] Mosca~Conte, A., Quantum mechanical modeling of nano magnetism. (Ph.D. thesis), 2007, SISSA, Trieste, Italy.
[51] Ma, Pui-Wai, Dudarev, S.L., Constrained density functional for noncollinear magnetism. Phys. Rev. B, 91, 2015, 054420.
[52] Bruneval, F., Crocombette, J.-P., Gonze, X., Dorado, B., Torrent, M., Jollet, F., Consistent treatment of charged systems within periodic boundary conditions: The projector augmented-wave and pseudopotential methods revisited. Phys. Rev. B, 89, 2014, 045116.
[53] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal~Corso, A., de~Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter, 21(39), 2009, 395502.
[54] Gonze, X., First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm. Phys. Rev. B 55 (1997), 10337–10354.
[55] Gonze, X., Lee, C., Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B, 55, 1997, 10355.
[57] Audouze, C., Jollet, F., Torrent, M., Gonze, X., Comparison between projector augmented-wave and ultrasoft pseudopotential formalisms at the density-functional perturbation theory level. Phys. Rev. B, 78, 2008, 035105.
[58] Ziman, J.M., Electrons and Phonons. 1960, Oxford University Press.
[59] Allen, P.B., New method for solving Boltzmann's equation for electrons in metals. Phys. Rev. B 17 (1978), 3725–3734.
[60] Allen, P.B., Boltzmann theory and resistivity of metals. Chelikowsky, J.R., Louie, S.G., (eds.) Quantum Theory of Real Materials, 1996, Klüwer, Boston, 219–250.
[61] Grimvall, G., The Electron Phonon Interaction in Metals. 1981, North-Holland, Amsterdam.
[62] Savrasov, S.Y., Savrasov, D.Y., Electron–phonon interactions and related physical properties of metals from linear-response theory. Phys. Rev. B, 54, 1996, 16487.
[63] Xu, B., Verstraete, M.J., First principles explanation of the positive seebeck coefficient of lithium. Phys. Rev. Lett., 112, 2014, 196603.
[64] Restrepo, O.D., Varga, K., Pantelides, S.T., First-principles calculations of electron mobilities in silicon: Phonon and coulomb scattering. Appl. Phys. Lett., 94(21), 2009.
[65] Allen, P.B., Heine, V., Theory of the temperature dependence of electronic band structures. J. Phys. C: Solid State Phys., 9, 1976, 2305.
[66] Allen, P.B., Cardona, M., Theory of the temperature dependence of the direct gap of germanium. Phys. Rev. B 23 (1981), 1495–1505.
[67] Allen, P.B., Cardona, M., Temperature dependence of the direct gap of Si and Ge. Phys. Rev. B 27 (1983), 4760–4769.
[68] Baroni, S., Giannozzi, P., Testa, A., Green's-function approach to linear response in solids. Phys. Rev. Lett. 58 (1987), 1861–1864.
[69] Poncé, S., Antonius, G., Gillet, Y., Boulanger, P., Laflamme~Janssen, J., Marini, A., Côté, M., Gonze, X., Temperature dependence of electronic eigenenergies in the adiabatic harmonic approximation. Phys. Rev. B, 90, 2014, 214304.
[70] Poncé, S., Antonius, G., Boulanger, P., Cannuccia, E., Marini, A., Côté, M., Gonze, X., Verification of first-principles codes: Comparison of total energies, phonon frequencies, electronphonon coupling and zero-point motion correction to the gap between ABINIT and QE/Yambo. Comput. Mater. Sci. 83 (2014), 341–348.
[71] Gonze, X., Boulanger, P., Côté, M., Theoretical approaches to the temperature and zero-point motion effects on the electronic band structure. Ann. Phys., 523, 2011, 168.
[72] Poncé, S., Gillet, Y., Laflamme~Janssen, J., Marini, A., Verstraete, M., Gonze, X., Temperature dependence of the electronic structure of semiconductors and insulators. J. Chem. Phys., 143, 2015, 102813.
[74] Antonius, G., Poncé, S., Boulanger, P., Côté, M., Gonze, X., Many-body effects on the zero-point renormalization of the band structure. Phys. Rev. Lett., 112, 2014, 215501.
[75] Antonius, G., Poncé, S., Lantagne-Hurtubise, E., Auclair, G., Gonze, X., Côté, M., Dynamical and anharmonic effects on the electron–phonon coupling and the zero-point renormalization of the electronic structure. Phys. Rev. B, 92, 2015, 085137.
[76] Gillet, Y., Giantomassi, M., Gonze, X., First-principles study of excitonic effects in raman intensities. Phys. Rev. B, 88, 2013, 094305.
[77] He, L., Liu, F., Hautier, G., Oliveira, M.J.T., Marques, M.A.L., Vila, F.D., Rehr, J.J., Rignanese, G.-M., Zhou, A., Accuracy of generalized gradient approximation functionals for density-functional perturbation theory calculations. Phys. Rev. B, 89, 2014, 064305.
[78] Albrecht, S., Reining, L., Del~Sole, R., Onida, G., Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys. Rev. Lett. 80 (1998), 4510–4513.
[79] Giantomassi, M., Stankovski, M., Shaltaf, R., Gruning, M., Bruneval, F., Rinke, P., Rignanese, G.M., Electronic properties of interfaces and defects from many-body perturbation theory: Recent developments and applications. Phys. Status Solidi b 248:2 (2011), 275–289.
[80] Cappellini, G., Del~Sole, R., Reining, L., Bechstedt, F., Model dielectric function for semiconductors. Phys. Rev. B 47 (1993), 9892–9895.
[81] Haydock, R., The recursive solution of the Schrödinger equation. Comput. Phys. Comm. 20:1 (1980), 11–16.
[82] Benedict, L.X., Shirley, E.L., Bohn, R.B., Optical absorption of insulators and the electron–hole interaction: An Ab Initio calculation. Phys. Rev. Lett. 80 (1998), 4514–4517.
[83] Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Modern Phys. 64 (1992), 1045–1097.
[84] Lindhard, J., On the properties of a gas of charged particles. Mat. Fys. Medd. Dan. Vid. Selsk., 28, 1954, 8.
[85] Campillo, I., Pitarke, J.M., Eguiluz, A.G., Electronic stopping power of aluminum crystal. Phys. Rev. B 58 (1998), 10307–10314.
[86] Lebègue, S., Harl, J., Gould, T., Ángyán, J.G., Kresse, G., Dobson, J.F., Cohesive properties and asymptotics of the dispersion interaction in graphite by the random phase approximation. Phys. Rev. Lett., 105, 2010, 196401.
[87] Bruneval, F., Range-separated approach to the RPA correlation applied to the van der waals bond and to diffusion of defects. Phys. Rev. Lett., 108, 2012, 256403.
[88] Bruneval, F., Gonze, X., Accurate GW self-energies in a plane-wave basis using only a few empty states: Towards large systems. Phys. Rev. B, 78, 2008, 085125.
[89] Harl, J., Schimka, L., Kresse, G., Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids. Phys. Rev. B, 81, 2010, 115126.
[90] Aryasetiawan, F., Imada, M., Georges, A., Kotliar, G., Biermann, S., Lichtenstein, A.I., Frequency-dependent local interactions and low-energy effective models from electronic structure calculations. Phys. Rev. B, 70(19), 2004 195104–.
[91] Amadon, B., Applencourt, T., Bruneval, F., Screened coulomb interaction calculations: cRPA implementation and applications to dynamical screening and self-consistency in uranium dioxide and cerium. Phys. Rev. B, 89, 2014, 125110.
[92] Shih, B.-C., Zhang, Y., Zhang, W., Zhang, P., Screened coulomb interaction of localized electrons in solids from first principles. Phys. Rev. B, 85(4), 2012, 045132.
[93] Sakuma, R., Aryasetiawan, F., First-principles calculations of dynamical screened interactions for the transition metal oxides MO (M=Mn, Fe, Co, Ni). Phys. Rev. B, 87(16), 2013, 165118.
[94] Amadon, B., A self-consistent DFT+DMFT scheme in the projector augmented wave method: applications to cerium, Ce2O3 and Pu2O3 with the Hubbard I solver and comparison to DFT+U. J. Phys.: Condens. Matter, 24(7), 2012, 075604.
[95] Cococcioni, M., de~Gironcoli, S., Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B, 71(3), 2005, 035105.
[96] Anisimov, V.I., Gunnarsson, O., Density-functional calculation of effective coulomb interactions in metals. Phys. Rev. B 43:10 (1991), 7570–7574.
[97] Liechtenstein, A.I., Anisimov, V.I., Zaanen, J., Density-functional theory and strong interactions: Orbital ordering in mott-hubbard insulators. Phys. Rev. B 52:8 (1995), R5467–R5470.
[98] γ and β cerium: LDA+U calculations of ground-state parameters.
[99] Georges, A., Kotliar, G., Krauth, W., Rozenberg, M.J., Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Modern Phys. 68 (1996), 13–125.
[100] Georges, A., Strongly correlated electron materials: Dynamical mean-field theory and electronic structure. AIP Conf. Proc. 715:1 (2004), 3–74.
[101] Kotliar, G., Savrasov, S.Y., Haule, K., Oudovenko, V.S., Parcollet, O., Marianetti, C.A., Electronic structure calculations with dynamical mean-field theory. Rev. Modern Phys. 78:3 (2006), 865–951.
[102] Amadon, B., Lechermann, F., Georges, A., Jollet, F., Wehling, T.O., Lichtenstein, A.I., Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals. Phys. Rev. B, 77(20), 2008, 205112.
[103] Gull, E., Millis, A.J., Lichtenstein, A.I., Rubtsov, A.N., Troyer, M., Werner, P., Continuous-time Monte Carlo methods for quantum impurity models. Rev. Modern Phys. 83:2 (2011), 349–404.
[104] Bieder, J., Amadon, B., Thermodynamics of the α−γ transition in cerium from first principles. Phys. Rev. B, 89, 2014, 195132.
[105] D. Bergeron, A.-M.S. Tremblay, Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation, ArXiv e-prints, July, 2015.
[106] Amadon, B., Biermann, S., Georges, A., Aryasetiawan, F., The α−γ transition of cerium is entropy driven. Phys. Rev. Lett., 96, 2006, 066402.
[107] Werner, P., Comanac, A., de~Medici, L., Troyer, M., Millis, A.J., Continuous-time solver for quantum impurity models. Phys. Rev. Lett., 97(7), 2006, 076405.
[108] Daubechies, I., Lectures on Wavelets, Vol. 10, 1992, Society for Industrial and Applied Mathematics, SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104.
[109] Goedecker, S., Teter, M., Hutter, J., Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54:3 (1996), 1703–1710.
[110] Hartwigsen, C., Goedecker, S., Hutter, J., Relativistic separable dual-space Gaussian pseudopotentials from h to rn. Phys. Rev. B 58:7 (1998), 3641–3662.
[111] Genovese, L., Neelov, L., Goedecker, S., Deutsch, T., Alireza Ghasemi, S., Willand, A., Caliste, D., Zilberberg, O., Rayson, M., Bergman, A., Schneider, R., Daubechies wavelets as a basis set for density functional pseudopotential calculations. J. Chem. Phys., 129, 2008, 014109.
[112] T. Rangel, D. Caliste, L. Genovese, M. Torrent, A wavelet-based projector augmented-wave (PAW) method: the PAW library, 2015, in press.
[116] Marek, A., Blum, V., Johanni, R., Havu, V., Lang, B., Auckenthaler, T., Heinecke, A., Bungartz, H.-J., Lederer, H., The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science. J. Phys.: Condens. Matter 26:21 (2014), 1–15.
[117] Harju, A., Siro, T., Federici~Canova, F., Hakala, S., Rantalaiho, T., Computational physics on graphics processing units. Lecture Notes in Comput. Sci. 7782 (2013), 3–26.
[118] Maintz, S., Eck, B., Dronskowski, R., Speeding up plane-wave electronic-structure calculations using graphics-processing units. Comput. Phys. Comm. 182:7 (2012), 1421–1427.
[119] Genovese, L., Ospici, M., Deutsch, T., Méhaut, J.-F., Neelov, A., Goedecker, S., Density functional theory calculation on many-cores hybrid CPU–GPU architectures in hybrid architecture. J. Chem. Phys., 131, 2009, 034103.
[130] Lejaeghere, K., Van Speybroeck, V., Van Oost, G., Cottenier, S., Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals. Crit. Rev. Solid State Mater. Sci., 39, 2014, 1.
[131] Jollet, F., Torrent, M., Holzwarth, N., Generation of projector augmented-wave atomic data: a 71 element validated table in the XML format. Comput. Phys. Comm. 185 (2014), 1246–1254.
[132] Garrity, K.F., Bennett, J.W., Rabe, K.M., Vanderbilt, D., Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81 (2014), 446–452.
[138] Ong, S.P., Richards, W.D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V.L., Persson, K.A., Ceder, G., Python materials genomics (pymatgen) A robust, open-source python library for materials analysis. Comput. Mater. Sci. 68:0 (2013), 314–319.
[139] http://www.materialsproject.org.
[140] http://gitlab.abinit.org/abipy.
[141] Jmol: an open-source Java viewer for chemical structures in 3D, http://www.jmol.org/.
[142] http://github.org/abinitgui/abinitgui.
[143] http://gui.abinit.org.
[144] Wang, L.-W., Bellaiche, L., Wei, S.-H., Zunger, A., Majority representation of alloy electronic states. Phys. Rev. Lett., 80, 1998, 4725.
[145] Popescu, V., Zunger, A., Effective band structure of random alloys. Phys. Rev. Lett., 104, 2010, 236403.
[146] Popescu, V., Zunger, A., Extracting e versus k effective band structure from supercell calculations on alloys and impurities. Phys. Rev. B, 85, 2012, 085201.
[148] Medeiros, Paulo V.C., Stafström, Sven, Björk, Jonas, Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: Retaining an effective primitive cell band structure by band unfolding. Phys. Rev. B, 89, 2014, 041407.
[149] Rubel, O., Bokhanchuk, A., Ahmed, S.J., Assmann, E., Unfolding the band structure of disordered solids: from bound states to high-mobility kane fermions. Phys. Rev. B, 90, 2014, 115202.
[150] Momma, K., Izumi, F., Vesta3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44:6 (2011), 1272–1276.
[151] Rohlfing, M., Louie, S.G., Electron–hole excitations and optical spectra from first principles. Phys. Rev. B 62 (2000), 4927–4944.
[152] Gillet, Y., Giantomassi, M., Gonze, X., Efficient interpolation technique for Bethe–Salpeter calculation of optical spectra. Comput. Phys. Comm. 203C (2016), 83–93.
[153] Rostgaard, C., Exact exchange in density functional calculations. (M.S. thesis), 2006, Technical University of Denmark.
[154] Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., Van der waals density functional for general geometries. Phys. Rev. Lett., 92, 2004, 246401 Erratum: http://dx.doi.org/110.1103/PhysRevLett.95.109902.
[155] Román-Pérez, G., Soler, J.M., Efficient implementation of a Van der Waals density functional: Application to double-wall carbon nanotubes. Phys. Rev. Lett., 103, 2009, 096102.
[156] Grimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 27, 2006, 1787.
[157] Grimme, S., Anthony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 132, 2010, 154104.
[158] Grimme, S., Ehrlich, S., Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32 (2011), 1456–1465.
[159] Silvestrelli, P.L., van der Waals interactions in DFT made easy by Wannier functions. Phys. Rev. Lett., 100, 2008, 053002.
[160] Silvestrelli, P.L., van der Waals interactions in density functional theory using Wannier functions. J. Phys. Chem. A, 113, 2009, 5224.
[161] Ambrosetti, A., Silvestrelli, P.L., van der Waals interactions in density functional theory using wannier functions: Improved C6 and C3 coefficients by a different approach. Phys. Rev. B, 85, 2012, 073101.
[162] Silvestrelli, P.L., van der Waals interactions in density functional theory by combining the quantum harmonic oscillator-model with localized Wannier functions. J. Chem. Phys., 139, 2013, 054106.
[163] Espejo, C., Rangel, T., Pouillon, Y., Romero, A.H., Gonze, X., Wannier functions approach to van der Waals interactions in ABINIT. Comput. Phys. Comm., 183, 2012, 480.
[164] Laflamme~Janssen, J., Rousseau, B., Côté, M., Efficient dielectric matrix calculations using the Lanczos algorithm for fast many-body G0W0 implementations. Phys. Rev. B, 91(12), 2015, 125120.
[165] Rieger, M., Steinbeck, L., White, I.D., Rojas, H.N., Godby, R.W., The GW space–time method for the self-energy of large systems. Comput. Phys. Comm. 117:3 (1999), 211–228.
[166] Freund, R.W., Nachtigal, N.M., Software for simplified Lanczos and QMR algorithms. Appl. Numer. Math., 19, 1995, 319.
[168] J. Laflamme Janssen, Y. Gillet, S. Poncé, A. Martin, M. Torrent, X. Gonze, Accurate effective masses from density functional perturbation theory, in preparation.
[169] Luttinger, J.M., Kohn, W., Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97:4 (1955), 869–883.
[170] Mecholsky, N.A., Resca, L., Pegg, I.L., Fornari, M., Theory of band warping and its effects on thermoelectronic transport properties. Phys. Rev. B, 89(15), 2014, 155131.
[171] Sipe, J.E., Ghahramani, E., Nonlinear optical response of semiconductors in the independent-particle approximation. Phys. Rev. B 48 (1993), 11705–11722.
[172] Hughes, J.L.P., Sipe, J.E., Calculation of second-order optical response in semiconductors. Phys. Rev. B 53 (1996), 10751–10763.
[173] Sharma, S., Dewhurst, J.K., Ambrosch-Draxl, C., Linear and second-order optical response of III–V monolayer superlattices. Phys. Rev. B, 67, 2003, 165332.
[174] Sharma, S., Ambrosch-Draxl, C., Second-harmonic optical response from first principles. Phys. Scr., 2004, 2004, 128.