Ahern J.L., Turcotte D.L. Magma migration beneath an ocean ridge. J. Geophys. Res. 1979, 45:115-122.
Andersen O. The system anorthite-forsterite-silica. Am. J. Sci. 1915, 39:407-454.
Asimow P.D., Longhi J. The significance of multiple saturation points in the context of polybaric near-fractional melting. J. Petrol. 2004, 45:2349-2367.
Bartels K., Kinzler R., Grove T. High pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California. Contrib. Mineral. Petrol. 1991, 108:253-270.
Berthet S., Malavergne V., Righter K. Melting of the Indarch meteorite (EH4 chondrite) at 1 GPa and variable oxygen fugacity: implications for early planetary differentiation processes. Geochim. Cosmochim. Acta 2009, 73:6402-6420.
Boujibar A., Righter K., Pando K., Danielson L.R. Experimental constraints on the chemical differentiation of Mercury's mantle. Lunar and Planetary Science Conference 2015, vol. XLVI:2544.
Bowen N.L. The Evolution of the Igneous Rocks 1928, Princeton University Press, Princeton, NJ.
Brown S.M., Elkins-Tanton L.T. Compositions of Mercury's earliest crust from magma ocean models. Earth Planet. Sci. Lett. 2009, 286:446-455.
Byrne P.K., Klimczak C., Williams D.A., Hurwitz D.M., Solomon S.C., Head J.W., Preusker F., Oberst J. An assemblage of lava flow features on Mercury. J. Geophys. Res., Planets 2013, 188:1303-1322.
Cartier C., Hammouda T., Doucelance R., Boyet M., Devidal J.-L., Moine B. Experimental study of trace element partitioning between enstatite and melt in enstatite chondrites at low oxygen fugacities and 5 GPa. Geochim. Cosmochim. Acta 2014, 130:167-187.
Chabot N.L., Wollack E.A., Klima R.L., Minitti M.E. Experimental constraints on Mercury's core composition. Earth Planet. Sci. Lett. 2014, 390:199-208.
Charlier B., Grove T.L., Zuber M.T. Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth Planet. Sci. Lett. 2013, 363:50-60.
Corgne A., Keshav S., Wood B.J., McDonough W.F., Fei Y. Metal-silicate partitioning and constraints on core composition and oxygen fugacity during Earth accretion. Geochim. Cosmochim. Acta 2008, 72:574-589.
Denevi B.W., Ernst C.M., Meyer H.M., Robinson M.S., Murchie S.L., Whitten J.L., Head J.W., Watters T.R., Solomon S.C., Ostrach L.R., Chapman C.R., Byrne P.K., Klimczak C., Peplowski P.N. The distribution and origin of smooth plains on Mercury. J. Geophys. Res., Planets 2013, 118:891-907.
Fogel R.A. Aubrite basalt vitrophyres: the missing basaltic component and high-sulfur silicate melts. Geochim. Cosmochim. Acta 2005, 69:1633-1648.
Gaetani G.A., Grove T.L. Wetting of mantle olivine by sulfide melt: implications for Re/Os ratios in mantle peridotite and late-stage core formation. Earth Planet. Sci. Lett. 1999, 169:147-163.
Ghiorso M.S., Sack R.O. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 1995, 119:197-212.
Ghiorso M.S., Hirschmann M.M., Reiners P.W., Kress V.C. The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem. Geophys. Geosyst. 2002, 3:1030.
Grove T.L., Parman S.W. Thermal evolution of the Earth as recorded by komatiites. Earth Planet. Sci. Lett. 2004, 219:173-187.
Gupta A.K., Green D.H., Taylor W.R. The liquidus surface of the system forsterite-nepheline-silica at 28 kb. Am. J. Sci. 1987, 287:560-565.
Head J.W., Chapman C.R., Strom R.G., Fassett C.I., Denevi B.W., Blewett D.T., Ernst C.M., Watters T.R., Solomon S.C., Murchie S.L., Prockter L.M., Chabot N.L., Gillis-Davis J.J., Whitten J.L., Goudge T.A., Baker D.M.H., Hurwitz D.M., Ostrach L.R., Xiao Z., Merline W.J., Kerber L., Dickson J.L., Oberst J., Byrne P.K., Klimczak C., Nittler L.R. Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science 2011, 333:1853-1856.
Herzberg C.T. Solidus and liquidus temperatures and mineralogies for anhydrous garnet-lherzolite to 15 GPa. Phys. Earth Planet. Inter. 1983, 32:193-202.
Hess P.C. Phase equilibria constraints on the origin of ocean floor basalts. Mantle Flow and Melt Migration 1992, 67-102. American Geophysical Union. J. Phipps Morgan, D.K. Blackman, J.M. Sinton (Eds.).
Hirschmann M.M. Mantle solidus: experimental constraints and the effect of peridotite composition. Geochem. Geophys. Geosyst. 2000, 1.
Hirschmann M.M., Asimow P.D., Ghiorso M.S., Stolper E.M. Calculation of peridotite partial melting from thermodynamic models of minerals and melts. III. Controls on isobaric melt production and the effect of water on melt production. J. Petrol. 1999, 40:831-851.
Katz R.F., Spiegelman M., Langmuir C.H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 2003, 4:1073.
Kiefer W.S. Melting in the martian mantle: shergottite formation and implications for present-day mantle convection on Mars. Meteorit. Planet. Sci. 2003, 38:1815-1832.
Kiefer W.S., Filiberto J., Sandu C., Li Q. The effects of mantle composition on the peridotite solidus: implications for the magmatic history of Mars. Geochim. Cosmochim. Acta 2015, 162:247-258.
Klein E.M., Langmuir C.H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 1987, 92:8089-8115.
Klimczak C., Watters T.R., Ernst C.M., Freed A.M., Byrne P.K., Solomon S.C., Blair D.M., Head J.W. Deformation associated with ghost craters and basins in volcanic smooth plains on Mercury: strain analysis and implications for plains evolution. J. Geophys. Res., Planets 2012, 117.
Kushiro I. Determination of liquidus relations in synthetic silicate systems with electron probe analysis: the system forsterite-diopside-silica at 1 atmosphere. Am. Mineral. 1972, 57:1260-1271.
Liu T.-C., Presnall D.C. Liquidus phase relationships on the join anorthite-forsterite-quartz at 20 kbar with applications to basalt petrogenesis and igneous sapphirine. Contrib. Mineral. Petrol. 1990, 104:735-742.
Longhi J. Liquidus equilibria and solid solution in the system CaAl2Si2O8-Mg2SiO4-CaSiO3-SiO2 at low pressure. Am. J. Sci. 1987, 287:265-331.
Malavergne V., Toplis M.J., Berthet S., Jones J. Highly reducing conditions during core formation on Mercury: implications for internal structure and the origin of a magnetic field. Icarus 2010, 206:199-209.
Malavergne V., Cordier P., Righter K., Brunet F., Zanda B., Addad A., Smith T., Bureau H., Surblé S., Raepsaet C., Charon E., Hewins R.H. How Mercury can be the most reduced terrestrial planet and still store iron in its mantle. Earth Planet. Sci. Lett. 2014, 394:186-197.
Marchi S., Chapman C.R., Fassett C.I., Head J.W., Bottke W.F., Strom R.G. Global resurfacing of Mercury 4.0-4.1 billion years ago by heavy bombardment and volcanism. Nature 2013, 499:59-61.
McCoy T.J., Dickinson T.L., Lofgren G.E. Partial melting of the Indarch (EH4) meteorite: a textural, chemical, and phase relations view of melting and melt migration. Meteorit. Planet. Sci. 1999, 34:735-746.
McCubbin F.M., Riner M.A., Vander Kaaden K.E., Burkemper L.K. Is Mercury a volatile-rich planet?. Geophys. Res. Lett. 2012, 39.
McKenzie D.P., Bickle M.J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 1988, 29:625-679.
Métrich N., Berry A.J., O'Neill H.S.C., Susini J. The oxidation state of sulfur in synthetic and natural glasses determined by X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 2009, 73:2382-2399.
Nimmo F. 8.02 - energetics of the core. Treatrise in Geophysics 2007, vol. 1:31-65. Elsevier, Amsterdam. B. Romanowicz, A. Dziewonski, G. Schubert (Eds.).
Nittler L.R., Starr R.D., Weider S.Z., McCoy T.J., Boynton W.V., Ebel D.S., Ernst C.M., Evans L.G., Goldsten J.O., Hamara D.K., Lawrence D.J., McNutt R.L., Schlemm C.E., Solomon S.C., Sprague A.L. The major-element composition of Mercury's surface from MESSENGER X-ray spectrometry. Science 2011, 333:1847-1850.
Osborn E.F., Tait D.B. The system diopside-forsterite-anorthite. Am. J. Sci. Bowen Volu 1952, 413-433.
Padovan S., Wieczorek M.A., Margot J.-L., Tosi N., Solomon S.C. Thickness of the crust of Mercury from geoid-to-topography ratios. Geophys. Res. Lett. 2015, 42:1029-1038.
Peplowski P.N., Lawrence D.J., Rhodes E.A., Sprague A.L., McCoy T.J., Denevi B.W., Evans L.G., Head J.W., Nittler L.R., Solomon S.C., Stockstill-Cahill K.R., Weider S.Z. Variations in the abundances of potassium and thorium on the surface of Mercury: results from the MESSENGER gamma-ray spectrometer. J. Geophys. Res., Planets 2012, 117.
Peplowski P.N., Evans L.G., Stockstill-Cahill K.R., Lawrence D.J., Goldsten J.O., McCoy T.J., Nittler L.R., Solomon S.C., Sprague A.L., Starr R.D., Weider S.Z. Enhanced sodium abundance in Mercury's north polar region revealed by the MESSENGER gamma-ray spectrometer. Icarus 2014, 228:86-95.
Peplowski P.N., Lawrence D.J., Feldman W.C., Goldsten J.O., Bazell D., Evans L.G., Head J.W., Nittler L.R., Solomon S.C., Weider S.Z. Geochemical terranes of Mercury's northern hemisphere as revealed by MESSENGER neutron measurements. Icarus 2015, 253:346-363.
Presnall D.C., Dixon S.A., Dixon J.R., O'Donnell T.H., Brenner N.L., Schrock R.L., Dycus D.W. Liquidus phase relations on the join diopside-forsterite-anorthite from 1 atm to 20 kbar: their bearing on the generation and crystallization of basaltic magma. Contrib. Mineral. Petrol. 1978, 66:203-220.
Presnall D.C., Dixon J.R., O'Donnell T.H., Dixon S.A. Generation of mid-ocean ridge tholeiites. J. Petrol. 1979, 20:3-35.
Sen G., Presnall D.C. Liquidus phase relationships on the join anorthite-forsterite-quartz at 10 kbar with applications to basalt petrogenesis. Contrib. Mineral. Petrol. 1984, 85:404-408.
Shorttle O., MacLennan J., Lambart S. Quantifying lithological variability in the mantle. Earth Planet. Sci. Lett. 2014, 395:24-40.
Smith D.E., Zuber M.T., Phillips R.J., Solomon S.C., Hauck S.A., Lemoine F.G., Mazarico E., Neumann G.A., Peale S.J., Margot J.-L., Johnson C.L., Torrence M.H., Perry M.E., Rowlands D.D., Goossens S., Head J.W., Taylor A.H. Gravity field and internal structure of Mercury from MESSENGER. Science 2012, 336:214-217.
Sorbadere F., Schiano P., Métrich N. Constraints on the origin of nepheline-normative primitive magmas in island arcs inferred from olivine-hosted melt inclusion compositions. J. Petrol. 2013, 54:215-233.
Taylor G.J., Scott E.R.D. Mercury. Treatise on Geochemistry 2003, 477-485. Pergamon, Oxford. D.H. Heinrich, K.T. Karl (Eds.).
Thomas R.J., Rothery D.A., Conway S.J., Anand M. Long-lived explosive volcanism on Mercury. Geophys. Res. Lett. 2014, 41:6084-6092.
Till C.B., Grove T.L., Krawczynski M.J. A melting model for variably depleted and enriched lherzolite in the plagioclase and spinel stability fields. J. Geophys. Res., Solid Earth 2012, 117.
Tosi N., Grott M., Plesa A.-C., Breuer D. Thermochemical evolution of Mercury's interior. J. Geophys. Res., Planets B 2013.
Vander Kaaden K.E., McCubbin F.M. The origin of boninites on Mercury: an experimental study of the northern volcanic plains lavas. Geochim. Cosmochim. Acta 2016, 173:246-263.
Walter M.J., Presnall D.C. Melting behavior of simplified lherzolite in the system CaO-MgO-Al2O3-SiO2-Na2O from 7 to 35 kbar. J. Petrol. 1994, 35:329-359.
Weider S.Z., Nittler L.R., Starr R.D., McCoy T.J., Stockstill-Cahill K.R., Byrne P.K., Denevi B.W., Head J.W., Solomon S.C. Chemical heterogeneity on Mercury's surface revealed by the MESSENGER X-ray spectrometer. J. Geophys. Res. 2012, 117.
Weider S.Z., Nittler L.R., Starr R.D., McCoy T.J., Solomon S.C. Variations in the abundance of iron on Mercury's surface from MESSENGER X-ray spectrometer observations. Icarus 2014, 235:170-186.
Weider S.Z., Nittler L.R., Starr R.D., Crapster-Pregont E.J., Peplowski P.N., Denevi B.W., Head J.W., Byrne P.K., Hauck S.A., Ebel D.S., Solomon S.C. Evidence for geochemical terranes on Mercury: global mapping of major elements with MESSENGER's X-ray spectrometer. Earth Planet. Sci. Lett. 2015, 416:109-120.
Zolotov M.Y., Sprague A.L., Hauck S.A., Nittler L.R., Solomon S.C., Weider S.Z. The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J. Geophys. Res., Planets 2013, 118:138-146.