Kapranov P, St Laurent G (2012) Dark Matter RNA: Existence, Function, and Controversy. Front Genet 3:60. doi: 10.3389/fgene.2012.00060 PMID: 22536205
Lyle R, Wright TJ, Clark LN, Hewitt JE (1995) The FSHD-associated repeat, D4Z4, is a member of a dispersed family of homeobox-containing repeats, subsets of which are clustered on the short arms of the acrocentric chromosomes. Genomics 28:389-397. doi: 10.1006/geno. 1995.1166 PMID: 7490072
Winokur ST, Bengtsson U, Vargas JC, Wasmuth JJ, Altherr MR, Weiffenbach B, et al. (1996) The evolutionary distribution and structural organization of the homeobox-containing repeat D4Z4 indicates a functional role for the ancestral copy in the FSHD region. Hum Mol Genet 5:1567-1575. PMID: 8894690
Ding H, Beckers MC, Plaisance S, Marynen P, Collen D, Belayew A (1998) Characterization of a double homeodomain protein (DUX1) encoded by a cDNA homologous to 3.3 kb dispersed repeated elements. Hum Mol Genet 7:1681-1694. PMID: 9736770
Beckers M, Gabriëls J, van der Maarel S, De Vriese A, Frants RR, Collen D, et al. (2001) Active genes in junk DNA? Characterization of DUX genes embedded within 3.3 kb repeated elements. Gene 264:51-57. PMID: 11245978
Coppée F, Mattéotti C, Ansseau E, Sauvage S, Leclercq I, Leroy A, et al. (2004) The DUX gene family and FSHD. In: FSHD facioscapulohumeral muscular dystrophy: clinical medicine and molecular cell biology., BIOS Scientific Publishers. Meena Upadhyaya & David N. Cooper, London, New York, pp 117-131
Hewitt JE, Lyle R, Clark LN, Valleley EM, Wright TJ, Wijmenga C, et al. (1994) Analysis of the tandem repeat locus D4Z4 associated with facioscapulohumeral muscular dystrophy. Hum Mol Genet 3:1287-1295. PMID: 7987304
Gabriëls J, Beckers MC, Ding H, De Vriese A, Plaisance S, van der Maarel SM, et al. (1999) Nucleotide sequence of the partially deleted D4Z4 locus in a patient with FSHD identifies a putative gene within each 3.3 kb element. Gene 236:25-32. PMID: 10433963
Kowaljow V, Marcowycz A, Ansseau E, Conde CB, Sauvage S, Mattéotti C, et al. (2007) The DUX4 gene at the FSHD1A locus encodes a pro-apoptotic protein. Neuromuscul Disord 17:611-623. doi: 10.1016/j.nmd.2007.04.002 PMID: 17588759
Dixit M, Ansseau E, Tassin A, Winokur S, Shi R, Qian H, et al. (2007) DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. Proc Natl Acad Sci USA 104:18157-18162. doi: 10.1073/pnas.0708659104 PMID: 17984056
Dmitriev P, Lipinski M, Vassetzky YS (2009) Pearls in the junk: dissecting the molecular pathogenesis of facioscapulohumeral muscular dystrophy. Neuromuscul Disord 19:17-20. doi: 10.1016/j.nmd. 2008.09.004 PMID: 18974002
Lemmers R J LF, van der Vliet PJ, Klooster R, Sacconi S, Camaño P, Dauwerse JG, et al. (2010) A unifying genetic model for facioscapulohumeral muscular dystrophy. Science 329:1650-1653. doi: 10. 1126/science.1189044 PMID: 20724583
Richards M, Coppée F, Thomas N, Belayew A, Upadhyaya M (2012) Facioscapulohumeral muscular dystrophy (FSHD): an enigma unravelled? Hum Genet 131:325-340. doi: 10.1007/s00439-011-1100-z PMID: 21984394
Tawil R, van der Maarel SM, Tapscott SJ (2014) Facioscapulohumeral dystrophy: the path to consensus on pathophysiology. Skelet Muscle 4:12. doi: 10.1186/2044-5040-4-12 PMID: 24940479
Clapp J, Mitchell LM, Bolland DJ, Fantes J, Corcoran AE, Scotting PJ, et al. (2007) Evolutionary conservation of a coding function for D4Z4, the tandem DNA repeat mutated in facioscapulohumeral muscular dystrophy. Am J Hum Genet 81:264-279. doi: 10.1086/519311 PMID: 17668377
Leidenroth A, Hewitt JE (2010) A family history of DUX4: phylogenetic analysis of DUXA, B, C and Duxbl reveals the ancestral DUX gene. BMC Evol Biol 10:364. doi: 10.1186/1471-2148-10-364 PMID: 21110847
Holland PWH, Booth HAF, Bruford EA (2007) Classification and nomenclature of all human homeobox genes. BMC Biol 5:47. doi: 10.1186/1741-7007-5-47 PMID: 17963489
Zhong Y, Holland P W H (2011) The dynamics of vertebrate homeobox gene evolution: gain and loss of genes in mouse and human lineages. BMC Evol Biol 11:169. doi: 10.1186/1471-2148-11-169 PMID: 21679462
Ansseau E, Laoudj-Chenivesse D, Marcowycz A, Tassin A, Vanderplanck C, Sauvage S, et al. (2009) DUX4c is up-regulated in FSHD. It induces the MYF5 protein and human myoblast proliferation. PLoS ONE 4:e7482. doi: 10.1371/journal.pone.0007482 PMID: 19829708
Kawazu M, Yamamoto G, Yoshimi M, Yamamoto K, Asai T, Ichikawa M, et al. (2007) Expression profiling of immature thymocytes revealed a novel homeobox gene that regulates double-negative thymocyte development. J Immunol 179:5335-5345. PMID: 17911620
Wu S-L, Tsai M-S, Wong S-H, Hsieh-Li H-M, Tsai T-S, Chang W-T, et al. (2010) Characterization of genomic structures and expression profiles of three tandem repeats of a mouse double homeobox gene: Duxbl. Dev Dyn 239:927-940. doi: 10.1002/dvdy.22210 PMID: 20063414
Wu S-L, Li G-Z, Chou C-Y, Tsai M-S, Chen Y-P, Li C-J, et al. (2014) Double homeobox gene, Duxbl, promotes myoblast proliferation and abolishes myoblast differentiation by blocking MyoD transactivation. Cell Tissue Res 358:551-566. doi: 10.1007/s00441-014-1974-x PMID: 25130140
Sharon N, Mor I, Zahavi E, Benvenisty N (2012) DUXO, a novel double homeobox transcription factor, is a regulator of the gastrula organizer in human embryonic stem cells. Stem Cell Res 9:261-269. doi: 10.1016/j.scr.2012.08.003 PMID: 23010573
Young JM, Whiddon JL, Yao Z, Kasinathan B, Snider L, Geng LN, et al. (2013) DUX4 binding to retroelements creates promoters that are active in FSHD muscle and testis. PLoS Genet 9:e1003947. doi: 10.1371/journal.pgen. 1003947 PMID: 24278031
Dandapat A, Hartweck LM, Bosnakovski D, Kyba M (2013) Expression of the human FSHD-linked DUX4 gene induces neurogenesis during differentiation of murine embryonic stem cells. Stem Cells Dev 22:2440-2448. doi: 10.1089/scd.2012.0643 PMID: 23560660
Rickard AM, Petek LM, Miller DG (2015) Endogenous DUX4 expression in FSHD myotubes is sufficient to cause cell death and disrupts RNA splicing and cell migration pathways. Hum Mol Genet 24:5901-5914. doi: 10.1093/hmg/ddv315 PMID: 26246499
Bosnakovski D, Xu Z, Gang EJ, Galindo CL, Liu M, Simsek T, et al. (2008) An isogenetic myoblast expression screen identifies DUX4-mediated FSHD-associated molecular pathologies. EMBO J 27:2766-2779. doi: 10.1038/emboj.2008.201 PMID: 18833193
Ostlund C, Garcia-Carrasquillo RM, Belayew A, Worman HJ (2005) Intracellular trafficking and dynamics of double homeodomain proteins. Biochemistry 44:2378-2384. doi: 10.1021/bi047992w PMID: 15709750
Corona ED, Jacquelin D, Gatica L, Rosa AL (2013) Multiple protein domains contribute to nuclear import and cell toxicity of DUX4, a candidate pathogenic protein for facioscapulohumeral muscular dystrophy. PLoS ONE 8:e75614. doi: 10.1371/journal.pone.0075614 PMID: 24116060
Geng LN, Yao Z, Snider L, Fong AP, Cech JN, Young JM, et al. (2012) DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev Cell 22:38-51. doi: 10.1016/j.devcel.2011.11.013 PMID: 22209328
Sharma V, Harafuji N, Belayew A, Chen Y-W (2013) DUX4 differentially regulates transcriptomes of human rhabdomyosarcoma and mouse C2C12 cells. PLoS ONE 8:e64691. doi: 10.1371/journal. pone.0064691 PMID: 23717650
Feng Q, Snider L, Jagannathan S, Tawil R, van der Maarel SM, Tapscott SJ, et al. (2015) A feedback loop between nonsense-mediated decay and the retrogene DUX4 in facioscapulohumeral muscular dystrophy. Elife. doi: 10.7554/eLife.04996
Homma S, Beermann ML, Boyce FM, Miller JB (2015) Expression of FSHD-related DUX4-FL alters proteostasis and induces TDP-43 aggregation. Ann Clin Transl Neurol 2:151-166. doi: 10.1002/acn3.158 PMID: 25750920
Barro M, Carnac G, Flavier S, Mercier J, Vassetzky Y, Laoudj-Chenivesse D (2010) Myoblasts from affected and non-affected FSHD muscles exhibit morphological differentiation defects. J Cell Mol Med 14:275-289. doi: 10.1111/j.1582-4934.2008.00368.x PMID: 18505476
Zhu C-H, Mouly V, Cooper RN, Mamchaoui K, Bigot A, Shay JW, et al. (2007) Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell 6:515-523. doi: 10.1111/j.1474-9726.2007.00306.x PMID: 17559502
Krom YD, Dumonceaux J, Mamchaoui K, den Hamer B, Mariot V, Negroni E, et al. (2012) Generation of isogenic D4Z4 contracted and noncontracted immortal muscle cell clones from a mosaic patient: a cellular model for FSHD. Am J Pathol 181:1387-1401. doi: 10.1016/j.ajpath.2012.07.007 PMID: 22871573
Jones TI, Chen JCJ, Rahimov F, Homma S, Arashiro P, Beermann ML, et al. (2012) Facioscapulohumeral muscular dystrophy family studies of DUX4 expression: evidence for disease modifiers and a quantitative model of pathogenesis. Hum Mol Genet 21:4419-4430. doi: 10.1093/hmg/dds284 PMID: 22798623
Vandenbroere I, Paternotte N, Dumont JE, Erneux C, Pirson I (2003) The c-Cbl-associated protein and c-Cbl are two new partners of the SH2-containing inositol polyphosphate 5-phosphatase SHIP2. Biochem Biophys Res Commun 300:494-500. PMID: 12504111
Ding H, Descheemaeker K, Marynen P, Nelles L, Carvalho T, Carmo-Fonseca M, et al. (1996) Characterization of a helicase-like transcription factor involved in the expression of the human plasminogen activator inhibitor-1 gene. DNA Cell Biol 15:429-442. PMID: 8672239
Vanderplanck C, Ansseau E, Charron S, Stricwant N, Tassin A, Laoudj-Chenivesse D, et al. (2011) The FSHD atrophic myotube phenotype is caused by DUX4 expression. PLoS ONE 6:e26820. doi: 10.1371/journal.pone.0026820 PMID: 22053214
Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245-246. doi: 10.1038/340245a0 PMID: 2547163
Huang L-Q, Shi X-L, Tan Z-P, Fang H-Y, Zheng D, Xia J-H, et al. (2002) [Translational frameshift may be occur in p11, an interaction protein of Cx31, in yeast]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao 34:219-224. PMID: 12007000
Petersen-Mahrt SK, Estmer C, Ohrmalm C, Matthews DA, Russell WC, Akusjärvi G (1999) The splicing factor-associated protein, p32, regulates RNA splicing by inhibiting ASF/SF2 RNA binding and phosphorylation. EMBO J 18:1014-1024. doi: 10.1093/emboj/18.4.1014 PMID: 10022843
Dresios J, Aschrafi A, Owens GC, Vanderklish PW, Edelman GM, Mauro VP (2005) Cold stressinduced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proc Natl Acad Sci USA 102:1865-1870. doi: 10.1073/pnas.0409764102 PMID: 15684048
Söderberg O, Leuchowius K-J, Gullberg M, Jarvius M, Weibrecht I, Larsson L-G, et al. (2008) Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 45:227-232. doi: 10.1016/j.ymeth.2008.06.014 PMID: 18620061
Wallace LM, Garwick SE, Mei W, Belayew A, Coppee F, Ladner KJ, et al. (2011) DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo. Ann Neurol 69:540-552. doi: 10.1002/ana.22275 PMID: 21446026
Lukong KE, Huot M-E, Richard S (2009) BRK phosphorylates PSF promoting its cytoplasmic localization and cell cycle arrest. Cell Signal 21:1415-1422. doi: 10.1016/j.cellsig.2009.04.008 PMID: 19439179
Cadot B, Gache V, Vasyutina E, Falcone S, Birchmeier C, Gomes ER (2012) Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3. EMBO Rep 13:741-749. doi: 10.1038/embor.2012.89 PMID: 22732842
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381-386. doi: 10.1038/nbt.2859 PMID: 24658644
Yamamoto DL, Csikasz RI, Li Y, Sharma G, Hjort K, Karlsson R, et al. (2008) Myotube formation on micro-patterned glass: intracellular organization and protein distribution in C2C12 skeletal muscle cells. J Histochem Cytochem 56:881-892. doi: 10.1369/jhc.2008.951228 PMID: 18574252
Ploski JE, Shamsher MK, Radu A (2004) Paired-type homeodomain transcription factors are imported into the nucleus by karyopherin 13. Mol Cell Biol 24:4824-4834. doi: 10.1128/MCB.24.11.4824-4834.2004 PMID: 15143176
Mingot JM, Kostka S, Kraft R, Hartmann E, Görlich D (2001) Importin 13: a novel mediator of nuclear import and export. EMBO J 20:3685-3694. doi: 10.1093/emboj/20.14.3685 PMID: 11447110
Grünwald M, Lazzaretti D, Bono F (2013) Structural basis for the nuclear export activity of Importin13. EMBO J 32:899-913. doi: 10.1038/emboj.2013.29 PMID: 23435562
Ye W, Lin W, Tartakoff AM, Tao T (2011) Karyopherins in nuclear transport of homeodomain proteins during development. Biochim Biophys Acta 1813:1654-1662. doi: 10.1016/j.bbamcr.2011.01.013 PMID: 21256166
Bosnakovski D, Lamb S, Simsek T, Xu Z, Belayew A, Perlingeiro R, et al. (2008) DUX4c, an FSHD candidate gene, interferes with myogenic regulators and abolishes myoblast differentiation. Exp Neurol 214:87-96. doi: 10.1016/j.expneurol.2008.07.022 PMID: 18723017
Serebriiskii I, Estojak J, Berman M, Golemis EA (2000) Approaches to detecting false positives in yeast two-hybrid systems. BioTechniques 28:328-330, 332-336. PMID: 10683744
Winter DL, Paulin D, Mericskay M, Li Z (2014) Posttranslational modifications of desmin and their implication in biological processes and pathologies. Histochemistry and Cell Biology 141:1-16. doi: 10.1007/s00418-013-1148-z PMID: 24091796
López MP, Huber F, Grigoriev I, Steinmetz MO, Akhmanova A, Koenderink GH, et al. (2014) Actin-microtubule coordination at growing microtubule ends. Nature Communications 5:4778. doi: 10.1038/ncomms5778 PMID: 25159196
Zhang T, Zaal KJM, Sheridan J, Mehta A, Gundersen GG, Ralston E (2009) Microtubule plus-end binding protein EB1 is necessary for muscle cell differentiation, elongation and fusion. J Cell Sci 122:1401-1409. doi: 10.1242/jcs.039255 PMID: 19366726
Richardson BE, Nowak SJ, Baylies MK (2008) Myoblast fusion in fly and vertebrates: new genes, new processes and new perspectives. Traffic 9:1050-1059. doi: 10.1111/j.1600-0854.2008.00756.x PMID: 18435820
Mancini A, Sirabella D, Zhang W, Yamazaki H, Shirao T, Krauss RS (2011) Regulation of myotube formation by the actin-binding factor drebrin. Skelet Muscle 1:36. doi: 10.1186/2044-5040-1-36 PMID: 22152295
Pizon V, Gerbal F, Diaz CC, Karsenti E (2005) Microtubule-dependent transport and organization of sarcomeric myosin during skeletal muscle differentiation. EMBO J 24:3781-3792. doi: 10.1038/sj. emboj.7600842 PMID: 16237460
Musa H, Orton C, Morrison EE, Peckham M (2003) Microtubule assembly in cultured myoblasts and myotubes following nocodazole induced microtubule depolymerisation. J Muscle Res Cell Motil 24:301-308. PMID: 14620743
Honnappa S, Gouveia SM, Weisbrich A, Damberger FF, Bhavesh NS, Jawhari H, et al. (2009) An EB1-binding motif acts as a microtubule tip localization signal. Cell 138:366-376. doi: 10.1016/j.cell. 2009.04.065 PMID: 19632184
Hendricks AG, Lazarus JE, Perlson E, Gardner MK, Odde DJ, Goldman YE, et al. (2012) Dynein tethers and stabilizes dynamic microtubule plus ends. Curr Biol 22:632-637. doi: 10.1016/j.cub.2012.02. 023 PMID: 22445300
Lundin VF, Leroux MR, Stirling PC (2010) Quality control of cytoskeletal proteins and human disease. Trends Biochem Sci 35:288-297. doi: 10.1016/j.tibs.2009.12.007 PMID: 20116259
Sanger JW, Wang J, Fan Y, White J, Sanger JM (2010) Assembly and dynamics of myofibrils. J Biomed Biotechnol 2010:858606. doi: 10.1155/2010/858606 PMID: 20625425
Myhre JL, Pilgrim DB (2012) At the Start of the Sarcomere: A Previously Unrecognized Role for Myosin Chaperones and Associated Proteins during Early Myofibrillogenesis. Biochem Res Int 2012:712315. doi: 10.1155/2012/712315 PMID: 22400118
Tassin A, Leroy B, Laoudj-Chenivesse D, Wauters A, Vanderplanck C, Le Bihan M-C, et al. (2012) FSHD myotubes with different phenotypes exhibit distinct proteomes. PLoS ONE 7:e51865. doi: 10. 1371/journal.pone.0051865 PMID: 23272181
Rogers MT, Upadhyaya M, Sewry CA (2004) Histological, immunological, molecular and ultrastructural characterization of FSHD muscle. In: FSHD facioscapulohumeral muscular dystrophy: clinical medicine and molecular cell biology., BIOS Scientific Publishers. Meena Upadhyaya & David N. Cooper, London, New York, pp 277-298
Turki A, Hayot M, Carnac G, Pillard F, Passerieux E, Bommart S, et al. (2012) Functional muscle impairment in facioscapulohumeral muscular dystrophy is correlated with oxidative stress and mitochondrial dysfunction. Free Radic Biol Med 53:1068-1079. doi: 10.1016/j.freeradbiomed.2012.06. 041 PMID: 22796148
Lassche S, Ottenheijm CAC, Voermans NC, Westeneng H-J, Janssen BH, van der Maarel SM, et al. (2013) Determining the role of sarcomeric proteins in facioscapulohumeral muscular dystrophy: a study protocol. BMC Neurol 13:144. doi: 10.1186/1471-2377-13-144 PMID: 24119284
Bian Z-Y, Huang H, Jiang H, Shen D-F, Yan L, Zhu L-H, et al. (2010) LIM and cysteine-rich domains 1 regulates cardiac hypertrophy by targeting calcineurin/nuclear factor of activated T cells signaling. Hypertension 55:257-263. doi: 10.1161/HYPERTENSIONAHA.109.135665 PMID: 20026769
Frank D, Frauen R, Hanselmann C, Kuhn C, Will R, Gantenberg J, et al. (2010) Lmcd1/Dyxin, a novel Z-disc associated LIM protein, mediates cardiac hypertrophy in vitro and in vivo. J Mol Cell Cardiol 49:673-682. doi: 10.1016/j.yjmcc.2010.06.009 PMID: 20600098
Sims RJ, Weihe EK, Zhu L, O'Malley S, Harriss JV, Gottlieb PD (2002) m-Bop, a repressor protein essential for cardiogenesis, interacts with skNAC, a heart- and muscle-specific transcription factor. J Biol Chem 277:26524-26529. doi: 10.1074/jbc. M204121200 PMID: 12011100
Leinhart K, Brown M (2011) SET/MYND Lysine Methyltransferases Regulate Gene Transcription and Protein Activity. Genes (Basel) 2:210-218. doi: 10.3390/genes2010210
Li H, Randall WR, Du S-J (2009) skNAC (skeletal Naca), a muscle-specific isoform of Naca (nascent polypeptide-associated complex alpha), is required for myofibril organization. FASEB J 23:1988-2000. doi: 10.1096/fj.08-125542 PMID: 19211926
Tan X, Rotllant J, Li H, De Deyne P, DeDeyne P, Du SJ (2006) SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci USA 103:2713-2718. doi: 10.1073/pnas.0509503103 PMID: 16477022
Gao J, Li J, Li B-J, Yagil E, Zhang J, Du SJ (2014) Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles. PLoS ONE 9:e86808. doi: 10.1371/journal. pone.0086808 PMID: 24466251
Satoh M, Shaheen VM, Kao PN, Okano T, Shaw M, Yoshida H, et al. (1999) Autoantibodies define a family of proteins with conserved double-stranded RNA-binding domains as well as DNA binding activity. J Biol Chem 274:34598-34604. PMID: 10574923
Li Y, Masaki T, Shimakami T, Lemon SM (2014) hnRNP L and NF90 interact with hepatitis C virus 5'-terminal untranslated RNA and promote efficient replication. J Virol 88:7199-7209. doi: 10.1128/JVI. 00225-14 PMID: 24719423
Hüttelmaier S, Zenklusen D, Lederer M, Dictenberg J, Lorenz M, Meng X, et al. (2005) Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438:512-515. doi: 10.1038/nature04115 PMID: 16306994
Ayala FJ (2009) Gene Sharing and Evolution: The Diversity of Protein Functions by Joram Piatigorsky (2007) Harvard University Press. The FASEB Journal 23:2022-2023. doi: 10.1096/fj.09-0703
Costa ML, Escaleira R, Cataldo A, Oliveira F, Mermelstein CS (2004) Desmin: molecular interactions and putative functions of the muscle intermediate filament protein. Braz J Med Biol Res 37:1819-1830. doi:/S0100-879X2004001200007 PMID: 15558188
Cottle DL, McGrath MJ, Cowling BS, Coghill ID, Brown S, Mitchell CA (2007) FHL3 binds MyoD and negatively regulates myotube formation. J Cell Sci 120:1423-1435. doi: 10.1242/jcs.004739 PMID: 17389685
Yotov WV, St-Arnaud R (1996) Differential splicing-in of a proline-rich exon converts alphaNAC into a muscle-specific transcription factor. Genes Dev 10:1763-1772. PMID: 8698236
Hall MP, Nagel RJ, Fagg WS, Shiue L, Cline MS, Perriman RJ, et al. (2013) Quaking and PTB control overlapping splicing regulatory networks during muscle cell differentiation. RNA 19:627-638. doi: 10. 1261/rna.038422.113 PMID: 23525800
Maragh S, Miller RA, Bessling SL, Wang G, Hook PW, McCallion AS (2014) Rbm24a and Rbm24b are required for normal somitogenesis. PLoS ONE 9:e105460. doi: 10.1371/journal.pone.0105460 PMID: 25170925
Jayasena CS, Bronner ME (2012) Rbms3 functions in craniofacial development by posttranscriptionally modulating TGF-β signaling. J Cell Biol 199:453-466. doi: 10.1083/jcb.201204138 PMID: 23091072
Wellmann S, Truss M, Bruder E, Tornillo L, Zelmer A, Seeger K, Bührer C (2010) The RNA-binding protein RBM3 is required for cell proliferation and protects against serum deprivation-induced cell death. Pediatr Res 67:35-41. doi: 10.1203/PDR.0b013e3181c13326 PMID: 19770690
Miyamoto S, Hidaka K, Jin D, Morisaki T (2009) RNA-binding proteins Rbm38 and Rbm24 regulate myogenic differentiation via p21-dependent and -independent regulatory pathways. Genes Cells 14:1241-1252. doi: 10.1111/j.1365-2443.2009.01347.x PMID: 19817877
Jin D, Hidaka K, Shirai M, Morisaki T (2010) RNA-binding motif protein 24 regulates myogenin expression and promotes myogenic differentiation. Genes Cells 15:1158-1167. doi: 10.1111/j.1365-2443. 2010.01446.x PMID: 20977548
Yang J, Hung L-H, Licht T, Kostin S, Looso M, Khrameeva E, et al. (2014) RBM24 is a major regulator of muscle-specific alternative splicing. Dev Cell 31:87-99. doi: 10.1016/j.devcel.2014.08.025 PMID: 25313962
Poon KL, Tan KT, Wei YY, Ng CP, Colman A, Korzh V, et al. (2012) RNA-binding protein RBM24 is required for sarcomere assembly and heart contractility. Cardiovasc Res 94:418-427. doi: 10.1093/cvr/cvs095 PMID: 22345307
Huang L, Chi J, Berry FB, Footz TK, Sharp MW, Walter MA (2008) Human p32 is a novel FOXC1-interacting protein that regulates FOXC1 transcriptional activity in ocular cells. Invest Ophthalmol Vis Sci 49:5243-5249. doi: 10.1167/iovs.07-1625 PMID: 18676636
Yoshikawa H, Komatsu W, Hayano T, Miura Y, Homma K, Izumikawa K, et al. (2011) Splicing factor 2-associated protein p32 participates in ribosome biogenesis by regulating the binding of Nop52 and fibrillarin to preribosome particles. Mol Cell Proteomics 10:M110.006148. doi: 10.1074/mcp. M110. 006148
Ling S-C, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416-438. doi: 10.1016/j.neuron. 2013.07.033 PMID: 23931993
Strong MJ, Volkening K (2011) TDP-43 and FUS/TLS: sending a complex message about messenger RNA in amyotrophic lateral sclerosis? FEBS J 278:3569-3577. doi: 10.1111/j.1742-4658.2011. 08277.x PMID: 21810174
Landeras-Bueno S, Jorba N, Pérez-Cidoncha M, Ortín J (2011) The splicing factor proline-glutamine rich (SFPQ/PSF) is involved in influenza virus transcription. PLoS Pathog 7:e1002397. doi: 10.1371/journal.ppat.1002397 PMID: 22114566
Sury MD, McShane E, Hernandez-Miranda LR, Birchmeier C, Selbach M (2015) Quantitative Proteomics Reveals Dynamic Interaction of c-Jun. N-terminal Kinase (JNK) with RNA Transport Granule Proteins Splicing Factor Proline- and Glutamine-rich (Sfpq) and Non-POU Domain-containing Octamerbinding Protein (Nono) during Neuronal Differentiation. Molecular & Cellular Proteomics 14:50-65. doi: 10.1074/mcp. M114.039370
Hnia K, Ramspacher C, Vermot J, Laporte J (2014) Desmin in muscle and associated diseases: beyond the structural function. Cell Tissue Res. doi: 10.1007/s00441-014-2016-4
Janknecht R (2010) Multi-talented DEAD-box proteins and potential tumor promoters: p68 RNA helicase (DDX5) and its paralog, p72 RNA helicase (DDX17). Am J Transl Res 2:223-234. PMID: 20589163
Fuller-Pace FV, Moore HC (2011) RNA helicases p68 and p72: multifunctional proteins with important implications for cancer development. Future Oncol 7:239-251. doi: 10.2217/fon. 11.1 PMID: 21345143
Kar A, Fushimi K, Zhou X, Ray P, Shi C, Chen X, et al. (2011) RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5' splice site. Mol Cell Biol 31:1812-1821. doi: 10.1128/MCB.01149-10 PMID: 21343338
Dardenne E, Polay Espinoza M, Fattet L, Germann S, Lambert M-P, Neil H, et al. (2014) RNA helicases DDX5 and DDX17 dynamically orchestrate transcription, miRNA, and splicing programs in cell differentiation. Cell Rep 7:1900-1913. doi: 10.1016/j.celrep. 2014.05.010 PMID: 24910439
Lin J-C, Tarn W-Y (2012) Multiple roles of RBM4 in muscle cell differentiation. Front Biosci (Schol Ed) 4:181-189.
Kato Y, Nakamura A (2012) Roles of cytoplasmic RNP granules in intracellular RNA localization and translational control in the Drosophila oocyte. Dev Growth Differ 54:19-31. doi: 10.1111/j.1440-169X. 2011.01314.x PMID: 22111938
Speese SD, Ashley J, Jokhi V, Nunnari J, Barria R, Li Y, et al. (2012) Nuclear Envelope Budding Enables Large Ribonucleoprotein Particle Export during Synaptic Wnt Signaling. Cell 149:832-846. doi: 10.1016/j.cell.2012.03.032 PMID: 22579286
Buchan JR (2014) mRNP granules. Assembly, function, and connections with disease. RNA Biol 11:1019-1030. doi: 10.4161/15476286.2014.972208 PMID: 25531407
Saporita AJ, Chang H-C, Winkeler CL, Apicelli AJ, Kladney RD, Wang J, et al. (2011) RNA helicase DDX5 is a p53-independent target of ARF that participates in ribosome biogenesis. Cancer Res 71:6708-6717. doi: 10.1158/0008-5472. CAN-11-1472 PMID: 21937682
Ross K F A (1964) Nucleolar changes in differentiating myoblasts. Quart J micr Sci 105:423-447.
Abe T, Takano K, Suzuki A, Shimada Y, Inagaki M, Sato N, et al. (2004) Myocyte differentiation generates nuclear invaginations traversed by myofibrils associating with sarcomeric protein mRNAs. J Cell Sci 117:6523-6534. doi: 10.1242/jcs.01574 PMID: 15572409
Jønson L, Vikesaa J, Krogh A, Nielsen LK, Hansen T vO, Borup R, et al. (2007) Molecular composition of IMP1 ribonucleoprotein granules. Mol Cell Proteomics 6:798-811. doi: 10.1074/mcp. M600346-MCP200 PMID: 17289661
Yao Z, Snider L, Balog J, Lemmers R J LF, Van Der Maarel SM, Tawil R, et al. (2014) DUX4-induced gene expression is the major molecular signature in FSHD skeletal muscle. Hum Mol Genet 23:5342-5352. doi: 10.1093/hmg/ddu251 PMID: 24861551
Kawamura-Saito M, Yamazaki Y, Kaneko K, Kawaguchi N, Kanda H, Mukai H, et al. (2006) Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t (4;19) (q35; q13) translocation. Hum Mol Genet 15:2125-2137. doi: 10.1093/hmg/ddl136 PMID: 16717057
Tassin A, Laoudj-Chenivesse D, Vanderplanck C, Barro M, Charron S, Ansseau E, et al. (2013) DUX4 expression in FSHD muscle cells: how could such a rare protein cause a myopathy? J Cell Mol Med 17:76-89. doi: 10.1111/j.1582-4934.2012.01647.x PMID: 23206257
Snider L, Geng LN, Lemmers R J LF, Kyba M, Ware CB, Nelson AM, et al. (2010) Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene. PLoS Genet 6:e1001181. doi: 10. 1371/journal.pgen. 1001181 PMID: 21060811
Winokur ST, Chen Y-W, Masny PS, Martin JH, Ehmsen JT, Tapscott SJ, et al. (2003) Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation. Hum Mol Genet 12:2895-2907. doi: 10.1093/hmg/ddg327 PMID: 14519683
Celegato B, Capitanio D, Pescatori M, Romualdi C, Pacchioni B, Cagnin S, et al. (2006) Parallel protein and transcript profiles of FSHD patient muscles correlate to the D4Z4 arrangement and reveal a common impairment of slow to fast fibre differentiation and a general deregulation of MyoD-dependent genes. Proteomics 6:5303-5321. doi: 10.1002/pmic.200600056 PMID: 17013991
Tsumagari K, Chang S-C, Lacey M, Baribault C, Chittur SV, Sowden J, et al. (2011) Gene expression during normal and FSHD myogenesis. BMC Med Genomics 4:67. doi: 10.1186/1755-8794-4-67 PMID: 21951698
Reed P, Porter NC, Strong J, Pumplin DW, Corse AM, Luther PW, et al. (2006) Sarcolemmal reorganization in facioscapulohumeral muscular dystrophy. Ann Neurol 59:289-297. doi: 10.1002/ana.20750 PMID: 16437580
Laoudj-Chenivesse D, Carnac G, Bisbal C, Hugon G, Bouillot S, Desnuelle C, et al. (2005) Increased levels of adenine nucleotide translocator 1 protein and response to oxidative stress are early events in facioscapulohumeral muscular dystrophy muscle. J Mol Med 83:216-224. doi: 10.1007/s00109-004-0583-7 PMID: 15551024
Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154:727-736. doi: 10.1016/j.cell.2013.07.038 PMID: 23953108
Olivé M, Janué A, Moreno D, Gámez J, Torrejón-Escribano B, Ferrer I (2009) TAR DNA-Binding protein 43 accumulation in protein aggregate myopathies. J Neuropathol Exp Neurol 68:262-273. doi: 10.1097/NEN.0b013e3181996d8f PMID: 19225410
Fiesel FC, Kahle PJ (2011) TDP-43 and FUS/TLS: cellular functions and implications for neurodegeneration: Pathophysiology of TDP-43 and FUS. FEBS Journal 278:3550-3568. doi: 10.1111/j.1742-4658.2011.08258.x PMID: 21777389
Cozzolino M, Ferri A, Valle C, Carrì MT (2013) Mitochondria and ALS: Implications from novel genes and pathways. Molecular and Cellular Neuroscience 55:44-49. doi: 10.1016/j.mcn. 2012.06.001 PMID: 22705710
Sancisi V, Germinario E, Esposito A, Morini E, Peron S, Moggio M, et al. (2014) Altered Tnnt3 characterizes selective weakness of fast fibers in mice overexpressing FSHD region gene 1 (FRG1). Am J Physiol Regul Integr Comp Physiol 306:R124-137. doi: 10.1152/ajpregu.00379.2013 PMID: 24305066
Gabellini D, D'Antona G, Moggio M, Prelle A, Zecca C, Adami R, et al. (2006) Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1. Nature 439:973-977. doi: 10.1038/nature04422 PMID: 16341202
Davidovic L, Sacconi S, Bechara EG, Delplace S, Allegra M, Desnuelle C, et al. (2008) Alteration of expression of muscle specific isoforms of the fragile X related protein 1 (FXR1P) in facioscapulohumeral muscular dystrophy patients. J Med Genet 45:679-685. doi: 10.1136/jmg.2008.060541 PMID: 18628314
Pistoni M, Shiue L, Cline MS, Bortolanza S, Neguembor MV, Xynos A, et al. (2013) Rbfox1 downregulation and altered calpain 3 splicing by FRG1 in a mouse model of Facioscapulohumeral muscular dystrophy (FSHD). PLoS Genet 9:e1003186. doi: 10.1371/journal.pgen. 1003186 PMID: 23300487