Stock AM, Robinson VL, Goudreau PN. 2000. Two-component signal transduction. Annu Rev Biochem 69:183-215. http://dx.doi.org/10.1146/annurev.biochem.69.1.183.
Whitworth DE. 2012. Classification and organization of two-component systems, p 1-20. In Gross R, Beier D (ed), Two-component systems in bacteria. Caister Academic Press, Poole, United Kingdom.
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP. 2016. Taxonomy, physiology, and natural products of the Actinobacteria. Microbiol Mol Biol Rev 80:1-43. http://dx.doi.org/10.1128/MMBR.00019-15.
Hopwood DA. 2007. Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press, New York, NY.
Claessen D, Rozen DE, Kuipers OP, Søgaard-Andersen L, van Wezel GP. 2014. Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Rev Microbiol 12:115-124. http://dx.doi.org/10.1038/nrmicro3178.
Flärdh K, Buttner MJ. 2009. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36-49. http://dx.doi.org/10.1038/nrmicro1968.
Van Keulen G, Alderson J, White J, Sawers RG. 2007. The obligate aerobic actinomycete Streptomyces coelicolor A3(2) survives extended periods of anaerobic stress. Environ Microbiol 9:3143-3149. http://dx.doi.org/10.1111/j.1462-2920.2007.01433.x.
Hutchings MI, Hoskisson PA, Chandra G, Buttner MJ. 2004. Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology 150:2795-2806. http://dx.doi.org/10.1099/mic.0.27181-0.
Wang W, Shu D, Chen L, Jiang W, Lu Y. 2009. Cross-talk between an orphan response regulator and a noncognate histidine kinase in Streptomyces coelicolor. FEMS Microbiol Lett 294:150-156. http://dx.doi.org/10.1111/j.1574-6968.2009.01563.x.
Daigle F, Lerat S, Bucca G, Sanssouci É, Smith CP, Malouin F, Beaulieu C. 2015. A terD domain-encoding gene (SCO2368) is involved in calcium homeostasis and participates in calcium regulation of a DosR-like regulon in Streptomyces coelicolor. J Bacteriol 197:913-923. http://dx.doi.org/10.1128/JB.02278-14.
Gerasimova A, Kazakov AE, Arkin AP, Dubchak I, Gelfand MS. 2011. Comparative genomics of the dormancy regulons in mycobacteria. J Bacteriol 193:3446-3452. http://dx.doi.org/10.1128/JB.00179-11.
Chao MC, Rubin EJ. 2010. Letting sleeping dos lie: does dormancy play a role in tuberculosis? Annu Rev Microbiol 64:293-311. http:// dx.doi.org/10.1146/annurev.micro.112408.134043.
Martínez JL, Rojo F. 2011. Metabolic regulation of antibiotic resistance. FEMS Microbiol Rev 35:768-789. http://dx.doi.org/10.1111/j.1574-6976.2011.00282.x.
Selvaraj S, Sambandam V, Sardar D, Anishetty S. 2012. In silico analysis of DosR regulon proteins of Mycobacterium tuberculosis. Gene 506:233-241. http://dx.doi.org/10.1016/j.gene.2012.06.033.
Cho HY, Cho HJ, Kim YM, Oh JI, Kang BS. 2009. Structural insight into the heme-based redox sensing by DosS from Mycobacterium tuberculosis. J Biol Chem 284:13057-13067. http://dx.doi.org/10.1074/jbc.M808905200.
Podust LM, Ioanoviciu A, Ortiz de Montellano PR. 2008. 2.3 Å X-ray structure of the heme-bound GAF domain of sensory histidine kinase DosT of Mycobacterium tuberculosis. Biochemistry 47:-12523-125531. http://dx.doi.org/10.1021/bi8012356.
Wisedchaisri G, Wu M, Rice AE, Roberts DM, Sherman DR, Hol WG. 2005. Structures of Mycobacterium tuberculosis DosR and DosR-DNA complex involved in gene activation during adaptation to hypoxic latency. J Mol Biol 354:630 - 641. http://dx.doi.org/10.1016/j.jmb.2005.09.048.
Chauhan S, Tyagi JS. 2008. Cooperative binding of phosphorylated DevR to upstream sites is necessary and sufficient for activation of the Rv3134c-devRS operon in Mycobacterium tuberculosis: implication in the induction of DevR target genes. J Bacteriol 190:4301-4312. http://dx.doi.org/10.1128/JB.01308-07.
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202-W208. http://dx.doi.org/10.1093/nar/gkp335.
Hiard S, Marée R, Colson S, Hoskisson PA, Titgemeyer F, van Wezel GP, Joris B, Wehenkel L, Rigali S. 2007. PREDetector: a new tool to identify regulatory elements in bacterial genomes. Biochem Biophys Res Commun 357:861-864. http://dx.doi.org/10.1016/j.bbrc.2007.03.180.
Rigali S, Nivelle R, Tocquin P. 2015. On the necessity and biological significance of threshold-free regulon prediction outputs. Mol Biosyst 11:333-337. http://dx.doi.org/10.1039/c4mb00485j.
Fillenberg SB, Grau FC, Seidel G, Muller YA. 2015. Structural insight into operator dre-sites recognition and effector binding in the GntR/ HutC transcription regulator NagR. Nucleic Acids Res 43:1283-1296. http://dx.doi.org/10.1093/nar/gku1374.
Tenconi E, Urem M, S´wiatek-Polatyn´ska MA, Titgemeyer F, Muller YA, van Wezel GP, Rigali S. 2015. Multiple allosteric effectors control the affinity of DasR for its target sites. Biochem Biophys Res Commun 464:324-329. http://dx.doi.org/10.1016/j.bbrc.2015.06.152.
S´wiatek MA, Gubbens J, Bucca G, Song E, Yang YH, Laing E, Kim BG, Smith CP, van Wezel GP. 2013. The ROK family regulator Rok7B7 pleiotropically affects xylose utilization, carbon catabolite repression, and antibiotic production in Streptomyces coelicolor. J Bacteriol 195: 1236-1248. http://dx.doi.org/10.1128/JB.02191-12.
Fischer M, Alderson J, van Keulen G, White J, Sawers RG. 2010. The obligate aerobe Streptomyces coelicolor A3(2) synthesizes three active respiratory nitrate reductases. Microbiology 156:3166-3179. http://dx.doi.org/10.1099/mic.0.042572-0.
Fischer M, Falke D, Pawlik T, Sawers RG. 2014. Oxygen-dependent control of respiratory nitrate reduction in mycelium of Streptomyces coelicolor A3(2). J Bacteriol 196:4152-4162. http://dx.doi.org/10.1128/JB.02202-14.
Facey PD, Sevcikova B, Novakova R, Hitchings MD, Crack JC, Kor-manec J, Dyson PJ, Del Sol R. 2011. The dpsA gene of Streptomyces coelicolor: induction of expression from a single promoter in response to environmental stress or during development. PLoS One 6:e25593. http://dx.doi.org/10.1371/journal.pone.0025593.
Kim JN, Jeong Y, Yoo JS, Roe JH, Cho BK, Kim BG. 2015. Genome-scale analysis reveals a role for NdgR in the thiol oxidative stress response in Streptomyces coelicolor. BMC Genomics 16:116. http://dx.doi.org/10.1186/s12864-015-1311-0.
Pagels M, Fuchs S, Pané-Farré J, Kohler C, Menschner L, Hecker M, McNamarra PJ, Bauer MC, von Wachenfeldt C, Liebeke M, Lalk M, Sander G, von Eiff C, Proctor RA, Engelmann S. 2010. Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus. Mol Microbiol 76:1142-1161. http://dx.doi.org/10.1111/j.1365-2958.2010.07105.x.
Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ. 2012. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 16:819-852. http://dx.doi.org/10.1089/ars.2011.4051.
Shin JH, Singh AK, Cheon DJ, Roe JH. 2011. Activation of the SoxR regulon in Streptomyces coelicolor by the extracellular form of the pigmented antibiotic actinorhodin. J Bacteriol 193:75-81. http://dx.doi.org/10.1128/JB.00965-10.
Lee EJ, Karoonuthaisiri N, Kim HS, Park JH, Cha CJ, Kao CM, Roe JH. 2005. A master regulator sigmaB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol Microbiol 57:1252-1264. http://dx.doi.org/10.1111/j.1365-2958.2005.04761.x.
Zuber P. 2009. Management of oxidative stress in Bacillus. Annu Rev Microbiol 63:575-597. http://dx.doi.org/10.1146/annurev.micro.091208.073241.
Jung Y-G, Cho Y-B, Kim M-S, Yoo J-S, Hong S-H, Roe J-H. 2011. Determinants of redox sensitivity in RsrA, a zinc-containing anti-sigma factor for regulating thiol oxidative stress response. Nucleic Acids Res 39:7586-7597. http://dx.doi.org/10.1093/nar/gkr477.
Kim MS, Dufour YS, Yoo JS, Cho YB, Park JH, Nam GB, Kim HM, Lee KL, Donohue TJ, Roe JH. 2012. Conservation of thiol-oxidative stress responses regulated by SigR orthologues in actinomycetes. Mol Microbiol 85:326-344. http://dx.doi.org/10.1111/j.1365-2958.2012.08115.x.
Kallifidas D, Pascoe B, Owen GA, Strain-Damerell CM, Hong HJ, Paget MS. 2010. The zinc-responsive regulator zur controls expression of the coelibactin gene cluster in Streptomyces coelicolor. J Bacteriol 192:608-611. http://dx.doi.org/10.1128/JB.01022-09.
Li W, Bottrill AR, Bibb MJ, Buttner MJ, Paget MS, Kleanthous C. 2003. The role of zinc in the disulphide stress-regulated anti-sigma factor RsrA from Streptomyces coelicolor. J Mol Biol 333:461- 472. http://dx.doi.org/10.1016/j.jmb.2003.08.038.
Shin JH, Jung HJ, An YJ, Cho YB, Cha SS, Roe JH. 2011. Graded expression of zinc-responsive genes through two regulatory zinc-binding sites in Zur. Proc Natl Acad Sci U S A 108:5045-5050. http://dx.doi.org/10.1073/pnas.1017744108.
Dai Y, Outten FW. 2012. The E. coli SufS-SufE sulfur transfer system is more resistant to oxidative stress than IscS-IscU. FEBS Lett 586: 4016-4022. http://dx.doi.org/10.1016/j.febslet.2012.10.001.
Paget MS, Molle V, Cohen G, Aharonowitz Y, Buttner MJ. 2001. Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmaR regulon. Mol Microbiol 42:1007-1020. http://dx.doi.org/10.1046/j.1365-2958.2001.02675.x.
Jakimowicz D, van Wezel GP. 2012. Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere? Mol Microbiol 85: 393 - 404 . http: //dx.doi.org /10.1111/j.1365 -2958.2012.08107.x.
Keijser BJ, Noens EE, Kraal B, Koerten HK, van Wezel GP. 2003. The Streptomyces coelicolor ssgB gene is required for early stages of sporulation. FEMS Microbiol Lett 225:59-67. http://dx.doi.org/10.1016/S0378-1097(03)00481-6.
Willemse J, Borst JW, de Waal E, Bisseling T, van Wezel GP. 2011. Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes Dev 25:89-99. http://dx.doi.org/10.1101/gad.600211.
Ausmees N, Wahlstedt H, Bagchi S, Elliot MA, Buttner MJ, Flärdh K. 2007. SmeA, a small membrane protein with multiple functions in Streptomyces sporulation including targeting of a SpoIIIE/FtsK-like protein to cell division septa. Mol Microbiol 65:1458-1473. http://dx.doi.org/10.1111/j.1365-2958.2007.05877.x.
Claessen D, Rink R, de Jong W, Siebring J, de Vreugd P, Boersma FG, Dijkhuizen L, Wösten HA. 2003. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17:1714 -1726. http://dx.doi.org/10.1101/gad.264303.
Claessen D, Wösten HA, van Keulen G, Faber OG, Alves AM, Meijer WG, Dijkhuizen L. 2002. Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. Mol Microbiol 44:1483-1492. http://dx.doi.org/10.1046/j.1365-2958.2002.02980.x.
Elliot MA, Karoonuthaisiri N, Huang J, Bibb MJ, Cohen SN, Kao CM, Buttner MJ. 2003. The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17:1727-1740. http://dx.doi.org/10.1101/gad.264403.
Kodani S, Hudson ME, Durrant MC, Buttner MJ, Nodwell JR, Willey JM. 2004. The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc Natl Acad Sci U S A 101:11448 -11453. http://dx.doi.org/10.1073/pnas.0404220101.
Willey J, Santamaria R, Guijarro J, Geistlich M, Losick R. 1991. Extracellular complementation of a developmental mutation implicates a small sporulation protein in aerial mycelium formation by S. coelicolor. Cell 65:641-650. http://dx.doi.org/10.1016/0092-8674(91)90096-H.
Kelemen GH, Brian P, Flärdh K, Chamberlin L, Chater KF, Buttner MJ. 1998. Developmental regulation of transcription of whiE, a locus specifying the polyketide spore pigment in Streptomyces coelicolor A3 (2). J Bacteriol 180:2515-2521.
Salerno P, Persson J, Bucca G, Laing E, Ausmees N, Smith CP, Flärdh K. 2013. Identification of new developmentally regulated genes involved in Streptomyces coelicolor sporulation. BMC Microbiol 13:281. http://dx.doi.org/10.1186/1471-2180-13-281.
Piette A, Derouaux A, Gerkens P, Noens EE, Mazzucchelli G, Vion S, Koerten HK, Titgemeyer F, De Pauw E, Leprince P, van Wezel GP, Galleni M, Rigali S. 2005. From dormant to germinating spores of Streptomyces coelicolor A3(2): new perspectives from the crp null mutant. J Proteome Res 4:1699 -1708. http://dx.doi.org/10.1021/pr050155b.
Derouaux A, Halici S, Nothaft H, Neutelings T, Moutzourelis G, Dusart J, Titgemeyer F, Rigali S. 2004. Deletion of a cyclic AMP receptor protein homologue diminishes germination and affects morphological development of Streptomyces coelicolor. J Bacteriol 186: 1893-1897. http://dx.doi.org/10.1128/JB.186.6.1893-1897.2004.
Al-Bassam MM, Bibb MJ, Bush MJ, Chandra G, Buttner MJ. 2014. Response regulator heterodimer formation controls a key stage in Streptomyces development. PLoS Genet 10:e1004554. http://dx.doi.org/10.1371/journal.pgen.1004554.
Bibb MJ, Domonkos A, Chandra G, Buttner MJ. 2012. Expression of the chaplin and rodlin hydrophobic sheath proteins in Streptomyces venezuelae is controlled by sigma(BldN) and a cognate anti-sigma factor, RsbN. Mol Microbiol 84:1033-1049. http://dx.doi.org/10.1111/j.1365-2958.2012.08070.x.
Bibb MJ, Molle V, Buttner MJ. 2000. sigma(BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J Bacteriol 182:4606-4616.
Di Berardo C, Capstick DS, Bibb MJ, Findlay KC, Buttner MJ, Elliot MA. 2008. Function and redundancy of the chaplin cell surface proteins in aerial hypha formation, rodlet assembly, and viability in Streptomyces coelicolor. J Bacteriol 190:5879-5889. http://dx.doi.org/10.1128/JB.00685-08.
Huang J, Lih CJ, Pan KH, Cohen SN. 2001. Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev 15:3183-3192. http://dx.doi.org/10.1101/gad.943401.
Nieselt K, Battke F, Herbig A, Bruheim P, Wentzel A, Jakobsen ØM, Sletta H, Alam MT, Merlo ME, Moore J, Omara WA, Morrissey ER, Juarez-Hermosillo MA, Rodríguez-García A, Nentwich M, Thomas L, Iqbal M, Legaie R, Gaze WH, Challis GL, Jansen RC, Dijkhuizen L, Rand DA, Wild DL, Bonin M, Reuther J, Wohlleben W, Smith MC, Burroughs NJ, Martin JF, Hodgson DA, Takano E, Breitling R, Elling-sen TE, Wellington EM. 2010. The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics 11:10. http://dx.doi.org/10.1186/1471-2164-11-10.
Strakova E, Bobek J, Zikova A, Vohradsky J. 2013. Global features of gene expression on the proteome and transcriptome levels in S. coelicolor during germination. PLoS One 8:e72842. http://dx.doi.org/10.1371/journal.pone.0072842.
Wade JT, Reppas NB, Church GM, Struhl K. 2005. Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. Genes Dev 19: 2619-2630. http://dx.doi.org/10.1101/gad.1355605.
Gao Z, Li F, Wu G, Zhu Y, Yu T, Yu S. 2012. Roles of hinge region, loops 3 and 4 in the activation of Escherichia coli cyclic AMP receptor protein. Int J Biol Macromol 50: 1- 6 . http://dx.doi.org/10.1016/j.ijbiomac.2011.08.016.
Molle V, Fujita M, Jensen ST, Eichenberger P, González-Pastor JE, Liu JS, Losick R. 2003. The Spo0A regulon of Bacillus subtilis. Mol Microbiol 50:1683-1701. http://dx.doi.org/10.1046/j.1365-2958.2003.03818.x.
Laub MT, Chen SL, Shapiro L, McAdams HH. 2002. Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc Natl Acad Sci U S A 99:4632- 4637. http://dx.doi.org/10.1073/pnas.062065699.
Gao C, Hindra, Mulder D, Yin C, Elliot MA. 2012. Crp is a global regulator of antibiotic production in Streptomyces. mBio 3:00407-12. http://dx.doi.org/10.1128/mBio.00407-12.
Pullan ST, Chandra G, Bibb MJ, Merrick M. 2011. Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics 12:175. http://dx.doi.org/10.1186/1471-2164-12-175.
Allenby NE, Laing E, Bucca G, Kierzek AM, Smith CP. 2012. Diverse control of metabolism and other cellular processes in Streptomyces coelicolor by the PhoP transcription factor: genome-wide identification of in vivo targets. Nucleic Acids Res 40:9543-9556. http://dx.doi.org/10.1093/nar/gks766.
S´ wia tek-Polatyn´ ska MA, Bucca G, Laing E, Gubbens J, Titgemeyer F, Smith CP, Rigali S, van Wezel GP. 2015. Genome-wide analysis of in vivo binding of the master regulator DasR in Streptomyces coelicolor identifies novel non-canonical targets. PLoS One 10:e0122479. http://dx.doi.org/10.1371/journal.pone.0122479.
Taneja NK, Dhingra S, Mittal A, Naresh M, Tyagi JS. 2010. Mycobacterium tuberculosis transcriptional adaptation, growth arrest and dormancy phenotype development is triggered by vitamin C. PLoS One 5:e10860. http://dx.doi.org/10.1371/journal.pone.0010860.
Sousa EH, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA. 2007. DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Protein Sci 16:1708-1719. http://dx.doi.org/10.1110/ps.072897707.
Honaker RW, Dhiman RK, Narayanasamy P, Crick DC, Voskuil MI. 2010. DosS responds to a reduced electron transport system to induce the Mycobacterium tuberculosis DosR regulon. J Bacteriol 192: 6447-6455. http://dx.doi.org/10.1128/JB.00978-10.
Van Veluw GJ, Petrus ML, Gubbens J, de Graaf R, de Jong IP, van Wezel GP, Wösten HA, Claessen D. 2012. Analysis of two distinct mycelial populations in liquid-grown Streptomyces cultures using a flow cytometry-based proteomics approach. Appl Microbiol Biotechnol 96: 1301-1312. http://dx.doi.org/10.1007/s00253-012-4490-5.
Van Dissel D, Claessen D, Van Wezel GP. 2014. Morphogenesis of Streptomyces in submerged cultures. Adv Appl Microbiol 89:1-45. http://dx.doi.org/10.1016/B978-0-12-800259-9.00001-9.
Borodina I, Krabben P, Nielsen J. 2005. Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Res 15:820-829. http://dx.doi.org/10.1101/gr.3364705.
Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
Floriano B, Bibb M. 1996. afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 21:385-396. http://dx.doi.org/10.1046/j.1365-2958.1996.6491364.x.
Van Wezel GP, White J, Hoogvliet G, Bibb MJ. 2000. Application of redD, the transcriptional activator gene of the undecylprodigiosin biosynthetic pathway, as a reporter for transcriptional activity in Streptomyces coelicolor A3(2) and Streptomyces lividans. J Mol Microbiol Biotechnol 2:551-556.
Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces genetics. The John Innes Foundation, Norwich, United Kingdom.
S´ wia tek MA, Tenconi E, Rigali S, van Wezel GP. 2012. Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in the control of development and antibiotic production. J Bacteriol 194:1136 -1144. http://dx.doi.org/10.1128/JB.06370-11.
Vara J, Lewandowska-Skarbek M, Wang YG, Donadio S, Hutchinson CR. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J Bacteriol 171:5872-5881.
Blondelet-Rouault MH, Weiser J, Lebrihi A, Branny P, Pernodet JL. 1997. Antibiotic resistance gene cassettes derived from the Omega interposon for use in E. coli and Streptomyces. Gene 190:315-317. http://dx.doi.org/10.1016/S0378-1119(97)00014-0.
Colson S, Stephan J, Hertrich T, Saito A, van Wezel GP, Titgemeyer F, Rigali S. 2007. Conserved cis-acting elements upstream of genes composing the chitinolytic system of streptomycetes are DasR-responsive elements. J Mol Microbiol Biotechnol 12:60-66. http://dx.doi.org/10.1159/000096460.
Mahr K, van Wezel GP, Svensson C, Krengel U, Bibb MJ, Titgemeyer F. 2000. Glucose kinase of Streptomyces coelicolor A3(2): large-scale purification and biochemical analysis. Antonie Van Leeuwenhoek 78: 253-261.
Rigali S, Nothaft H, Noens EE, Schlicht M, Colson S, Müller M, Joris B, Koerten HK, Hopwood DA, Titgemeyer F, van Wezel GP. 2006. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol 61:1237-1251. http://dx.doi.org/10.1111/j.1365-2958.2006.05319.x.
Bucca G, Laing E, Mersinias V, Allenby N, Hurd D, Holdstock J, Brenner V, Harrison M, Smith CP. 2009. Development and application of versatile high density microarrays for genome-wide analysis of Streptomyces coelicolor: characterization of the HspR regulon. Genome Biol 10:R5. http://dx.doi.org/10.1186/gb-2009-10-1-r5.
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80. http://dx.doi.org/10.1186/gb-2004-5-10-r80.
Smyth GK, Speed T. 2003. Normalization of cDNA microarray data. Methods 31:265-273. http://dx.doi.org/10.1016/S1046-2023(03)00155-5.
Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J. 2006. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22:2825-2827. http://dx.doi.org/10.1093/bioinformatics/btl476.
Laing E, Smith CP. 2010. RankProdIt: a web-interactive rank products analysis tool. BMC Res Notes 3:221. http://dx.doi.org/10.1186/1756-0500-3-221.
Colson S, van Wezel GP, Craig M, Noens EE, Nothaft H, Mommaas AM, Titgemeyer F, Joris B, Rigali S. 2008. The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor. Microbiology 154:373-382. http://dx.doi.org/10.1099/mic.0.2007/011940-0.
Tenconi E, Jourdan S, Motte P, Virolle MJ, Rigali S. 2012. Extracellular sugar phosphates are assimilated by Streptomyces in a PhoP-dependent manner. Antonie Van Leeuwenhoek 102:425- 433. http://dx.doi.org/10.1007/s10482-012-9763-6.
Zdobnov EM, Apweiler R. 2001. InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: 847-848. http://dx.doi.org/10.1093/bioinformatics/17.9.847.
Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A. 2008. The Pfam protein families database. Nucleic Acids Res 36:D281-D288. http://dx.doi.org/10.1093/nar/gkm960.
Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schäffer AA, Yu YK. 2005. Protein database searches using compositionally adjusted substitution matrices. FEBS J 272:5101-5109. http://dx.doi.org/ 10.1111/j.1742-4658.2005.04945.x.
Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Res 14:1188-1190. http://dx.doi.org/10.1101/gr.849004.
Chauhan S, Sharma D, Singh A, Surolia A, Tyagi JS. 2011. Comprehensive insights into Mycobacterium tuberculosis DevR (DosR) regulon activation switch. Nucleic Acids Res 39:7400-7414. http://dx.doi.org/10.1093/nar/gkr375.