[en] MbtI is the salicylate synthase that catalyzes the first committed step in the synthesis of the iron chelating compound mycobactin in Mycobacterium tuberculosis. We previously developed a series of aromatic inhibitors against MbtI based on the reaction intermediate for this enzyme, isochorismate. The most potent of these inhibitors had hydrophobic substituents, ranging in size from a methyl to a phenyl group, appended to the terminal alkene of the enolpyruvyl group. These compounds exhibited low micromolar inhibition constants against MbtI and were at least an order of magnitude more potent than the parental compound for the series, which carries a native enolpyruvyl group. In this study, we sought to understand how the substituted enolpyruvyl group confers greater potency, by determining cocrystal structures of MbtI with six inhibitors from the series. A switch in binding mode at the MbtI active site is observed for inhibitors carrying a substituted enolpyruvyl group, relative to the parental compound. Computational studies suggest that the change in binding mode, and higher potency, is due to the effect of the substituents on the conformational landscape of the core inhibitor structure. The crystal structures and fluorescence-based thermal shift assays indicate that substituents larger than a methyl group are accommodated in the MbtI active site through significant but localized flexibility in the peptide backbone. These findings have implications for the design of improved inhibitors of MbtI, as well as other chorismate-utilizing enzymes from this family.
World Health Organization (2012) Global Tuberculosis Control 2011.
Iseman, M. (2002) Tuberculosis therapy: Past, present and future. Eur. Respir. J. 20, 87s-94s.
World Health Organization (2010) Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 global report on surveillance and response.
Koul, A., Arnoult, E., Lounis, N., Guillemont, J., and Andries, K. (2011) The challenge of new drug discovery for tuberculosis. Nature 469, 483-490.
Ma, Z., Lienhardt, C., Mcilleron, H., Nunn, A. J., and Wang, X. (2010) Global tuberculosis drug development pipeline: The need and the reality. Lancet 375, 2100-2109.
Schaible, U., and Kaufmann, S. (2004) Iron and microbial infection. Nat. Rev. Microbiol. 2, 946-953. (Pubitemid 39562533)
De Voss, J. J., Rutter, K., Schroeder, B. G., and Barry, C. E. (1999) Iron acquisition and metabolism by mycobacteria. J. Bacteriol. 181, 4443-4451. (Pubitemid 29357921)
Chim, N., Iniguez, A., Nguyen, T. Q., and Goulding, C. W. (2010) Unusual Diheme Conformation of the Heme-Degrading Protein from Mycobacterium tuberculosis. J. Mol. Biol. 395, 595-608.
De Voss, J. J., Rutter, K., Schroeder, B. G., Su, H., Zhu, Y., and Barry, C. E. (2000) The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc. Natl. Acad. Sci. U.S.A. 97, 1252-1257. (Pubitemid 30080845)
Quadri, L. E., Sello, J., Keating, T. A., Weinreb, P. H., and Walsh, C. T. (1998) Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem. Biol. 5, 631-645. (Pubitemid 28519450)
Frankel, B. A., and Blanchard, J. S. (2008) Mechanistic analysis of Mycobacterium tuberculosis Rv1347c, a lysine Nε-acyltransferase involved in mycobactin biosynthesis. Arch. Biochem. Biophys. 477, 259-266.
Manos-Turvey, A., Bulloch, E., Rutledge, P., Baker, E., Lott, J., and Payne, R. (2010) Inhibition studies of Mycobacterium tuberculosis salicylate synthase (MbtI). ChemMedChem 5, 1067-1079.
Vasan, M., Neres, J., Williams, J., Wilson, D. J., Teitelbaum, A. M., Remmel, R. P., and Aldrich, C. C. (2010) Inhibitors of the Salicylate Synthase (MbtI) from Mycobacterium tuberculosis Discovered by High-Throughput Screening. ChemMedChem 5, 2079-2087.
Labello, N. P., Bennett, E. M., Ferguson, D. M., and Aldrich, C. C. (2008) Quantitative Three Dimensional Structure Linear Interaction Energy Model of 5′-O-[N-(Salicyl)sulfamoyl]adenosine and the Aryl Acid Adenylating Enzyme MbtA. J. Med. Chem. 51, 7154-7160.
Neres, J., Labello, N. P., Somu, R. V., Boshoff, H. I., Wilson, D. J., Vannada, J., Chen, L., Barry, C. E., Bennett, E. M., and Aldrich, C. C. (2008) Inhibition of siderophore biosynthesis in Mycobacterium tuberculosis with nucleoside bisubstrate analogues: Structure-activity relationships of the nucleobase domain of 5′-O-[N-(salicyl)sulfamoyl]-adenosine. J. Med. Chem. 51, 5349-5370.
Neres, J., Wilson, D. J., Celia, L., Beck, B. J., and Aldrich, C. C. (2008) Aryl acid adenylating enzymes involved in siderophore biosynthesis: Fluorescence polarization assay, ligand specificity, and discovery of non-nucleoside inhibitors via high-throughput screening. Biochemistry 47, 11735-11749.
Qiao, C., Gupte, A., Boshoff, H. I., Wilson, D. J., Bennett, E. M., Somu, R. V., Barry, C. E., and Aldrich, C. C. (2007) 5′-O-[(NAcyl) sulfamoyl]adenosines as antitubercular agents that inhibit MbtA: An adenylation enzyme required for siderophore biosynthesis of the mycobactins. J. Med. Chem. 50, 6080-6094.
Somu, R. V., Wilson, D. J., Bennett, E. M., Boshoff, H. I., Celia, L., Beck, B. J., Barry, C. E., and Aldrich, C. C. (2006) Antitubercular nucleosides that inhibit siderophore biosynthesis: SAR of the glycosyl domain. J. Med. Chem. 49, 7623-7635. (Pubitemid 46033655)
Vannada, J., Bennett, E. M., Wilson, D. J., Boshoff, H. I., Barry, C. E., and Aldrich, C. C. (2006) Design, synthesis, and biological evaluation of β-ketosulfonamide adenylation inhibitors as potential antitubercular agents. Org. Lett. 8, 4707-4710. (Pubitemid 44629441)
Somu, R. V., Boshoff, H., Qiao, C., Bennett, E. M., Barry Iii, C. E., and Aldrich, C. C. (2006) Rationally-designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis. J. Med. Chem. 49, 31-34. (Pubitemid 43077318)
Harrison, A. J., Yu, M., Gårdenborg, T., Middleditch, M., Ramsay, R. J., Baker, E. N., and Lott, J. S. (2006) The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase. J. Bacteriol. 188, 6081-6091. (Pubitemid 44448550)
He, Z., Stigers Lavoie, K. D., Bartlett, P. A., and Toney, M. D. (2004) Conservation of mechanism in three chorismate-utilizing enzymes. J. Am. Chem. Soc. 126, 2378-2385. (Pubitemid 38295719)
Dosselaere, F., and Vanderleyden, J. (2001) A metabolic node in action: Chorismate-utilizing enzymes in microorganisms. Crit. Rev. Microbiol. 27, 75-131. (Pubitemid 32592377)
Spraggon, G., Kim, C., Nguyen-Huu, X., Yee, M. C., Yanofsky, C., and Mills, S. E. (2001) The structures of anthranilate synthase of Serratia marcescens crystallized in the presence of (i) its substrates, chorismate and glutamine, and a product glutamate, and (ii) its endproduct inhibitor, L-tryptophan. Proc. Natl. Acad. Sci. U.S.A. 98, 6021-6026.
Morollo, A. A., and Eck, M. J. (2001) Structure of the cooperative allosteric anthranilate synthase from Salmonella typhimurium. Nat. Struct. Mol. Biol. 8, 243-247. (Pubitemid 32180051)
Parsons, J., Jensen, P., Pachikara, A., Howard, A., Eisenstein, E., and Ladner, J. (2002) Structure of Escherichia coli aminodeoxychorismate synthase: Architectural conservation and diversity in chorismate-utilizing enzymes. Biochemistry 41, 2198-2208. (Pubitemid 34160880)
Kolappan, S., Zwahlen, J., Zhou, R., Truglio, J., Tonge, P., and Kisker, C. (2007) Lysine 190 is the catalytic base in MenF, the menaquinone-specific isochorismate synthase from Escherichia coli: Implications for an enzyme family. Biochemistry 46, 946-953. (Pubitemid 46184983)
Sridharan, S., Howard, N., Kerbarh, O., Błaszczyk, M., Abell, C., and Blundell, T. L. (2010) Crystal structure of Escherichia coli enterobactin-specific isochorismate synthase (EntC) bound to its reaction product isochorismate: Implications for the enzyme mechanism and differential activity of chorismate-utilizing enzymes. J. Mol. Biol. 397, 290-300.
Kerbarh, O., Chirgadze, D. Y., Blundell, T. L., and Abell, C. (2006) Crystal structures of Yersinia enterocolitica salicylate synthase and its complex with the reaction products salicylate and pyruvate. J. Mol. Biol. 357, 524-534. (Pubitemid 43290752)
Zwahlen, J., Kolappan, S., Zhou, R., Kisker, C., and Tonge, P. (2007) Structure and mechanism of MbtI, the salicylate synthase from Mycobacterium tuberculosis. Biochemistry 46, 954-964. (Pubitemid 46184984)
Walsh, C. T., Erion, M. D., Walts, A. E., Delany, J. J., and Berchtold, G. A. (1987) Chorismate Aminations: Partial-Purification of Escherichia coli PABA Synthase and Mechanistic Comparison with Anthranilate Synthase. Biochemistry 26, 4734-4745.
Kozlowski, M., Tom, N., Seto, C., Sefler, A., and Bartlett, P. (1995) Chorismate-utilizing enzymes isochorismate synthase, anthranilate synthase, and p-aminobenzoate synthase: Mechanistic insight through inhibitor design. J. Am. Chem. Soc. 117, 2128-2140.
Payne, R. J., Bulloch, E. M. M., Abell, A. D., and Abell, C. (2005) Design and synthesis of aromatic inhibitors of anthranilate synthase. Org. Biomol. Chem. 3, 3629-3635. (Pubitemid 41603761)
Payne, R. J., Kerbarh, O., Miguel, R. N., Abell, A. D., and Abell, C. (2005) Inhibition studies on salicylate synthase. Org. Biomol. Chem. 3, 1825-1827. (Pubitemid 40751350)
Payne, R. J., Bulloch, E. M. M., Toscano, M. M., Jones, M. A., Kerbarh, O., and Abell, C. (2009) Synthesis and evaluation of 2,5-dihydrochorismate analogues as inhibitors of the chorismate-utilising enzymes. Org. Biomol. Chem. 7, 2421-2429.
Payne, R. J., Bulloch, E. M. M., Kerbarh, O., and Abell, C. (2010) Inhibition of chorismate-utilising enzymes by 2-amino-4-carboxypyridine and 4-carboxypyridone and 5-carboxypyridone analogues. Org. Biomol. Chem. 8, 3534-3542.
Payne, R. J., Toscano, M. D., Bulloch, E. M. M., Abell, A. D., and Abell, C. (2005) Design and synthesis of aromatic inhibitors of anthranilate synthase. Org. Biomol. Chem. 3, 2271.
Ziebart, K. T., Dixon, S. M., Avila, B., El-Badri, M. H., Guggenheim, K. G., Kurth, M. J., and Toney, M. D. (2010) Targeting multiple chorismate-utilizing enzymes with a single inhibitor: Validation of a three-stage design. J. Med. Chem. 53, 3718-3729.
Li, Q. A., Mavrodi, D. V., Thomashow, L. S., Roessle, M., and Blankenfeldt, W. (2011) Ligand binding induces an ammonia channel in 2-amino-2-desoxyisochorismate (ADIC) synthase PhzE. J. Biol. Chem. 286, 18213-18221.
Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326. (Pubitemid 27085611)
Kabsch, W. (2010) XDS. Acta Crystallogr. D66, 125-132.
Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A., and Wilson, K. S. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr. D67, 235-242.
Vagin, A., and Teplyakov, A. (2010) Molecular replacement with MOLREP. Acta Crystallogr. D66, 22-25.
Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot. Acta Crystallogr. D66, 486-501.
Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D53, 240-255. (Pubitemid 27235885)
Murshudov, G. N., Skubak, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F., and Vagin, A. A. (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D67, 355-367.
Bricogne, G., Blanc, E., Brandl, M., Flensburg, C., Keller, P., Paciorek, W., Roversi, P., Sharff, A., Smart, O. S., Vonrhein, C., and Womack, T. O. (2011) BUSTER, version 2.8.0, Global Phasing Ltd., Cambridge, U.K.
Schüttelkopf, A. W., and Van Aalten, D. M. F. (2004) PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D60, 1355-1363. (Pubitemid 41079731)
Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C. (2010) MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D66, 12-21.
The PyMOL Molecular Graphics System, version 1.5 (2010) Schrödinger, LLC, New York.
Kabsch, W. (1976) Solution for Best Rotation to Relate 2 Sets of Vectors. Acta Crystallogr. A32, 922-923.
Niesen, F. H., Berglund, H., and Vedadi, M. (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212-2221. (Pubitemid 351565860)
Frisch, M. J., et al. (2009) Guassian 09, Gaussian, Wallingford, CT.
Stephens, P. J., Devlin, F. J., Chabalowski, C. F., and Frisch, M. J. (1994) Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 98, 11623-11627.
Becke, A. D. (1993) Density-Functional Thermochemistry. 3. The Role of Exact Exchange. J. Chem. Phys. 98, 5648-5652.
Ramadhar, T. R., and Batey, R. A. (2011) Accurate prediction of experimental free energy of activation barriers for the aliphatic-Claisen rearrangement through DFT calculations. Comput. Theor. Chem. 976, 167-182.
Cances, E., Mennucci, B., and Tomasi, J. (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 107, 3032-3041. (Pubitemid 127568923)
Fernandez, A., Fraser, C., and Scott, L. R. (2012) Purposely engineered drug-target mismatches for entropy-based drug optimization. Trends Biotechnol. 30, 1-7.
Frederick, K. K., Marlow, M. S., Valentine, K. G., and Wand, A. J. (2007) Conformational entropy in molecular recognition by proteins. Nature 448, 325-329. (Pubitemid 47080342)
Teague, S. J. (2003) Implications of protein flexibility for drug discovery. Nat. Rev. Drug Discovery 2, 527-541.
Freire, E. (2008) Do enthalpy and entropy distinguish first in class from best in class? Drug Discovery Today 13, 869-874.
Diederichs, K., and Karplus, P. (1997) Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat. Struct. Biol. 4, 269-275. (Pubitemid 27157198)