Article (Scientific journals)
Non-homogeneous Beatty sequences leading to invariant games
Cassaigne, Julien; Duchêne, Eric; Rigo, Michel
2016In SIAM Journal on Discrete Mathematics, 30, p. 1798-1829
Peer Reviewed verified by ORBi
 

Files


Full Text
non_v17.pdf
Author preprint (494.5 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Two-player combinatorial game; Beatty sequence; Sturmian word; Invariant game; Superadditivity
Abstract :
[en] We characterize pairs of complementary non-homogeneous Beatty sequences $(A_n)_{n>0}$ and $(B_n)_{n>0}$, with the restriction $A_1=1$ and $B_1\geq 3$, for which there exists an invariant take-away game having $\{(A_n,B_n),(B_n,A_n)\mid n> 0\}\cup\{(0,0)\}$ as set of $P$-positions. Using the notion of Sturmian word arising in combinatorics on words, this characterization can be translated into a decision procedure relying only on a few algebraic tests about algebraicity or rational independence. This work partially answers to a question of Larsson et al. raised in Larsson et al.
Disciplines :
Mathematics
Author, co-author :
Cassaigne, Julien
Duchêne, Eric
Rigo, Michel  ;  Université de Liège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Non-homogeneous Beatty sequences leading to invariant games
Publication date :
2016
Journal title :
SIAM Journal on Discrete Mathematics
ISSN :
0895-4801
eISSN :
1095-7146
Publisher :
Society for Industrial & Applied Mathematics
Volume :
30
Pages :
1798-1829
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 03 June 2016

Statistics


Number of views
106 (7 by ULiège)
Number of downloads
317 (1 by ULiège)

Bibliography


Similar publications



Sorry the service is unavailable at the moment. Please try again later.
Contact ORBi