Reference : Force measurements reveal how small binders perturb the dissociation mechanisms of DN...
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Multidisciplinary, general & others
http://hdl.handle.net/2268/197757
Force measurements reveal how small binders perturb the dissociation mechanisms of DNA duplex sequences
English
Burmistrova, Anastasia [Université de Liège - ULiège > Département de chimie (sciences) > Nanochimie et systèmes moléculaires >]
Fresch, Barbara [Université de Liège > Département de chimie (sciences) > Laboratoire de chimie physique théorique >]
Sluysmans, Damien mailto [Université de Liège > Département de chimie (sciences) > Nanochimie et systèmes moléculaires >]
De Pauw, Edwin [Université de Liège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.) >]
Remacle, Françoise [Université de Liège > Département de chimie (sciences) > Laboratoire de chimie physique théorique >]
Duwez, Anne-Sophie mailto [Université de Liège > Département de chimie (sciences) > Nanochimie et systèmes moléculaires >]
2016
Nanoscale
RSC Publishing
8
11718–11726
Yes (verified by ORBi)
International
2040-3364
2040-3372
Cambridge
United Kingdom
[en] The force-driven separation of double-stranded DNA is crucial to the accomplishment of cellular pro- cesses like genome transactions. Ligands binding to short DNA sequences can have a local stabilizing or destabilizing effect and thus severely affect these processes. Although the design of ligands that bind to specific sequences is a field of intense research with promising biomedical applications, so far, their effect on the force-induced strand separation has remained elusive. Here, by means of AFM-based single mole- cule force spectroscopy, we show the co-existence of two different mechanisms for the separation of a short DNA duplex and demonstrate how they are perturbed by small binders. With the support of Mole- cular Dynamics simulations, we evidence that above a critical pulling rate one of the dissociation pathways becomes dominant, with a dramatic effect on the rupture forces. Around the critical threshold, we observe a drop of the most probable rupture forces for ligand-stabilized duplexes. Our results offer a deep understanding of how a stable DNA–ligand complex behaves under force-driven strand separation
http://hdl.handle.net/2268/197757
10.1039/c6nr02201d
http://pubs.rsc.org/en/content/articlelanding/2016/nr/c6nr02201d#!divAbstract

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
Nanoscale2016_8_11718.pdfPublisher postprint2.14 MBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.