Bacurd1/Kctd13 and Bacurd2/Tnfaip1 are interacting partners to Rnd proteins which influence the long-term positioning and dendritic maturation of cerebral cortical neurons.
Bacurd1:Kctd13 and Bacurd2:Tnfaip1 are interacting partners to Rnd proteins which influence the long-term positioning and dendritic maturation of cerebral cortical neurons.pdf
[en] BACKGROUND: The development of neural circuits within the embryonic cerebral cortex relies on the timely production of neurons, their positioning within the embryonic cerebral cortex as well as their terminal differentiation and dendritic spine connectivity. The RhoA GTPases Rnd2 and Rnd3 are important for neurogenesis and cell migration within the embryonic cortex (Nat Commun 4:1635, 2013), and we recently identified the BTB/POZ domain-containing Adaptor for Cul3-mediated RhoA Degradation family member Bacurd2 (also known as Tnfaip1) as an interacting partner to Rnd2 for the migration of embryonic mouse cortical neurons (Neural Dev 10:9, 2015). FINDINGS: We have extended this work and report that Bacurd1/Kctd13 and Bacurd2/Tnfaip1 are interacting partners to Rnd2 and Rnd3 in vitro. Given that these genes are expressed during cortical development, we performed a series of in utero electroporation studies in mice and found that disruptions to Bacurd1/Kctd13 or Bacurd2/Tnfaip1 expression impair the long-term positioning of E14.5-born cortical neurons within the postnatal (P17) mouse cerebral cortex. We also find that forced expression of Bacurd1/Kctd13 and Bacurd2/Tnfaip1 alters the branching and dendritic spine properties of layer II/III projection neurons. CONCLUSIONS: We identify Bacurd1/Kctd13 and Bacurd2/Tnfaip1 as interacting partners to Rnd proteins which influence the development of cortical neurons. Their neurodevelopmental functions are likely to be relevant to human brain development and disease.
Disciplines :
Life sciences: Multidisciplinary, general & others
Bacurd1/Kctd13 and Bacurd2/Tnfaip1 are interacting partners to Rnd proteins which influence the long-term positioning and dendritic maturation of cerebral cortical neurons.
Wu Q, Liu J, Fang A, Li R, Bai Y, Kriegstein AR, et al. The dynamics of neuronal migration. Adv Exp Med Biol. 2014;800:25-36. doi: 10.1007/978-94-007-7687-6_2.
Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD. Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci. 2013;14(11):755-69. doi: 10.1038/nrn3586.
Pacary E, Azzarelli R, Guillemot F. Rnd3 coordinates early steps of cortical neurogenesis through actin-dependent and -independent mechanisms. Nat Commun. 2013;4:1635. doi: 10.1038/ncomms2614.
Pacary E, Heng J, Azzarelli R, Riou P, Castro D, Lebel-Potter M, et al. Proneural transcription factors regulate different steps of cortical neuron migration through Rnd-mediated inhibition of RhoA signaling. Neuron. 2011;69(6):1069-84. doi: 10.1016/j.neuron.2011.02.018.
Azzarelli R, Guillemot F, Pacary E. Function and regulation of Rnd proteins in cortical projection neuron migration. Front Neurosci. 2015;9:19. doi: 10.3389/fnins.2015.00019.
Azzarelli R, Pacary E, Garg R, Garcez P, van den Berg D, Riou P, et al. An antagonistic interaction between PlexinB2 and Rnd3 controls RhoA activity and cortical neuron migration. Nat Commun. 2014;5:3405. doi: 10.1038/ncomms4405.
Heng JI, Nguyen L, Castro DS, Zimmer C, Wildner H, Armant O, et al. Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature. 2008;455(7209):114-8. doi: 10.1038/nature07198.
Gladwyn-Ng IE, Li SS, Qu Z, Davis JM, Ngo L, Haas M, et al. Bacurd2 is a novel interacting partner to Rnd2 which controls radial migration within the developing mammalian cerebral cortex. Neural Dev. 2015;10:9. doi: 10.1186/s13064-015-0032-z.
Golzio C, Willer J, Talkowski ME, Oh EC, Taniguchi Y, Jacquemont S, et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature. 2012;485(7398):363-7. doi: 10.1038/nature11091.
Schwenk J, Metz M, Zolles G, Turecek R, Fritzius T, Bildl W, et al. Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature. 2010;465(7295):231-5. doi: 10.1038/nature08964.
Steinberg S, de Jong S, Mattheisen M, Costas J, Demontis D, Jamain S, et al. Common variant at 16p11.2 conferring risk of psychosis. Mol Psychiatry. 2014;19(1):108-14. doi: 10.1038/mp.2012.157.
Blumenthal I, Ragavendran A, Erdin S, Klei L, Sugathan A, Guide JR, et al. Transcriptional consequences of 16p11.2 deletion and duplication in mouse cortex and multiplex autism families. Am J Hum Genet. 2014;94(6):870-83. doi: 10.1016/j.ajhg.2014.05.004.
Siegel DH, Shieh JT, Kwon EK, Baselga E, Blei F, Cordisco M, et al. Copy number variation analysis in 98 individuals with PHACE syndrome. J Invest Dermatol. 2013;133(3):677-84. doi: 10.1038/jid.2012.367.
Heng JI, Tan SS. Cloning and characterization of GRIPE, a novel interacting partner of the transcription factor E12 in developing mouse forebrain. J Biol Chem. 2002;277(45):43152-9. doi: 10.1074/jbc.M204858200.
Consortium F. the RP, Clst, Forrest AR, Kawaji H, Rehli M et al. A promoter-level mammalian expression atlas. Nature. 2014;507(7493):462-70. doi: 10.1038/nature13182.
Lin GN, Corominas R, Lemmens I, Yang X, Tavernier J, Hill DE, et al. Spatiotemporal 16p11.2 protein network implicates cortical late mid-fetal brain development and KCTD13-Cul3-RhoA pathway in psychiatric diseases. Neuron. 2015;85(4):742-54. doi: 10.1016/j.neuron.2015.01.010.
Visel A, Thaller C, Eichele G. GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res. 2004;32(Database issue):D552-6. doi: 10.1093/nar/gkh029.
Kriegstein AR, Noctor SC. Patterns of neuronal migration in the embryonic cortex. Trends Neurosci. 2004;27(7):392-9. doi: 10.1016/j.tins.2004.05.001.
Ngo L, Haas M, Qu Z, Li SS, Zenker J, Teng KS, et al. TUBB5 and its disease-associated mutations influence the terminal differentiation and dendritic spine densities of cerebral cortical neurons. Hum Mol Genet. 2014;23(19):5147-58. doi: 10.1093/hmg/ddu238.
Gutierrez H, Dolcet X, Tolcos M, Davies A. HGF regulates the development of cortical pyramidal dendrites. Development. 2004;131(15):3717-26. doi: 10.1242/dev.01209.
Chen Y, Yang Z, Meng M, Zhao Y, Dong N, Yan H, et al. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol Cell. 2009;35(6):841-55. doi: 10.1016/j.molcel.2009.09.004.
Govek EE, Newey SE, Van Aelst L. The role of the Rho GTPases in neuronal development. Genes Dev. 2005;19(1):1-49. doi: 10.1101/gad.1256405.
Li Z, Van Aelst L, Cline HT. Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat Neurosci. 2000;3(3):217-25. doi: 10.1038/72920.
Threadgill R, Bobb K, Ghosh A. Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron. 1997;19(3):625-34.
Sailland J, Tribollet V, Forcet C, Billon C, Barenton B, Carnesecchi J, et al. Estrogen-related receptor alpha decreases RHOA stability to induce orientated cell migration. Proc Natl Acad Sci U S A. 2014;111(42):15108-13. doi: 10.1073/pnas.1402094111.
Koleske AJ. Molecular mechanisms of dendrite stability. Nat Rev Neurosci. 2013;14(8):536-50. doi: 10.1038/nrn3486.
Heng JI, Qu Z, Ohtaka-Maruyama C, Okado H, Kasai M, Castro D, et al. The zinc finger transcription factor RP58 negatively regulates Rnd2 for the control of neuronal migration during cortical development. Cereb Cortex. 2013. doi: 10.1093/cercor/bht277.