[en] There is a strong interest in developing a capacity to predict the occurrence of cyanobacteria blooms in lakes and to identify the measures to be taken to reduce water quality problems associated with the occurrence of potentially harmful taxa. Here we conducted a weekly to bi-weekly monitoring program on five shallow eutrophic lakes during two years, with the aim of gathering data on total cyanobacterial abundance, as estimated from marker pigments determined by HPLC analysis of phytoplankton extracts. We also determined bloom composition and measured weather and limnological variables. The most frequently identified taxa were Aphanizomenon flos-aquae, Microcystis aeruginosa, Planktothrix agardhii and Anabaena spp. We used the data base composed of a total of 306 observations and an adaptive regression trees method, the boosted regression tree (BRT), to develop predictive models of bloom occurrence and composition, based on environmental conditions. Data processing with BRT enabled the design of satisfactory prediction models of cyanobacterial abundance and of the occurrence of the main taxa. Phosphorus (total and soluble reactive phosphate), dissolved inorganic nitrogen, epilimnion temperature, photoperiod and euphotic depth were among the best predictive variables, contributing for at least 10 % in the models, and their relative contribution varied in accordance with the ecological traits of the taxa considered. Meteorological factors (wind, rainfall, surface irradiance) had a significant role in species selection. Such results may contribute to designing measures for bloom management in shallow lakes.
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique F.R.S.-FNRS - Fonds de la Recherche Scientifique DGRNE - Région wallonne. Direction générale des Ressources naturelles et de l'Environnement
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bell S.G., Codd G.A. Cyanobacterial toxins and human health. Rev. Med. Microbiol. 1996, 5:256-264.
Bobbin J., Recknagel F. Knowledge discovery for prediction and explanation of blue-green algal dynamics in lakes by evolutionary algorithms. Ecol. Model. 2001, 146(1-3):253-262.
Carey C.C., Ibelings B.W., Hoffmann E.P., Hamilton D.P., Brookes J.D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 2012, 46(5):1394-1407.
Carmichael W.W. A world overview - one-hundred-twenty-seven years of research on toxic cyanobacteria - where do we go from here?. Cyanobacterial Harmful Algal Blooms, State of the Science and Research Needs 2008, Vol. 619:105-126. Springer, New York. H.K. Hudnell (Ed.).
Carmichael W.W., Azevedo S.M.F.O., An J.S., Molica R.J., Jochimsen E.M., Lau S., Rinehart K.L., Shaw G.R., Eaglesham G.K. Human fatalities from cyanobacteria, chemical and biological evidence for cyanotoxins. Environ. Health Perspect. 2001, 109:663-668.
Carvalho L., McDonald C., de Hoyos C., Mischke U., Phillips G., Borics G., Poikane S., Skjelbred B., Solheim A.L., Van Wichelen J., Cardoso A.C. Sustaining recreational quality of European lakes, minimizing the health risks from algal blooms through phosphorus control. J. Appl. Ecol. 2013, 50(2):315-323.
Chorus I. Cyanotoxins occurrence in freshwaters - a summary of survey results from different countries. Cyanotoxins, Occurrence, Causes, Consequences 2001, Springer-Verlag, Berlin/New York, (357 p.). I. Chorus (Ed.).
CYANONET: a global network for cyanobacterial bloom and toxin risk management. International Hydrobiological Programme, Technical Documents in Hydrology 2005, Vol. 76. UNESCO, Paris, (138 p.). G.A. Codd, S.M.F.O. Azevedo, S.N. Bagchi, M.D. Burch, W.W. Carmichael, W.R. Harding, K. Kaya, H.C. Utkilen (Eds.).
Crawley M.J. The R Book 2007, Wiley, New York, (950 p.).
de Figueiredo D.R., Azeiteiro U.M., Esteves S.M., Gonzalves F.J.M., Pereira M.J. Microcystin-producing blooms - a serious global public health issue. Ecotoxicol. Environ. Saf. 2004, 59:151-163.
De'ath G. Boosted trees for ecological modeling and prediction. Ecology 2007, 88:243-251.
Descy J.-P., Higgins K.W., Mackey D.J., Hurley J.P., Frost T.M. Pigment ratios and phytoplankton assessment in North Wisconsin lakes. J. Phycol. 2000, 36:274-286.
Development Core Team R. R, A Language and Environment for Statistical Computing 2012, R Foundation for Statistical Computing, Vienna, Austria.
Dittmann E., Wiegand C. Cyanobacterial toxins - occurrence, biosynthesis and impact on human affairs. Invited review. Mol. Nutr. Food Res. 2006, 50:7-17.
Dolman A.M., Rücker J., Pick F.R., Fastner J., Rohrlack T., Mischke U., Wiedner C. Cyanobacteria and cyanotoxins, the influence of nitrogen versus phosphorus. PLoS One 2012, 7(6).
Downing J.A., Watson S.B., McCauley E. Predicting cyanobacteria dominance in lakes. Can. J. Fish. Aquat. Sci. 2001, 58(10):1905-1908.
Elith J., Leathwick J.R., Hastie T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77:802-813.
Elliott J.A. Is the future blue-green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria. Water Res. 2012, 46(5):1364-1371.
Friedman J.H. Greedy function approximation: a gradient boosting machine. Annals of Statistics 2001, 29(5):1189-1232.
Fielding A.H., Bell J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24:38-49.
Havens K.E. Cyanobacteria blooms, effects on aquatic ecosystems. Advances in Experimental Medicine and Biology 2008, Vol. 619:733-747. Springer, New York. H.K. Hudnell (Ed.).
Hudnell K.H. Cyanobacterial harmful algal blooms, state of the science and research needs. Advances in Experimental Medicine and Biology 2008, 619. Springer, New York.
Jeong K.-S., Recknagel F., Joo G.-J. Prediction and elucidation of population dynamics of the blue-green algae Microcystis aeruginosa and the diatom Stephanodiscus hantzschii in the Nakdong River-reservoir system (South Korea) by a recurrent artificial neural network. Ecological Informatics. Understanding Ecology by Biologically-Inspired Computation 2003, 195-213. Springer Verlag, Berlin. F. Recknagel (Ed.).
Lek S.M., Scardi P.F., Verdonschot M., Descy J.-P., Park Y.S. Modelling Community Structure in Freshwater Ecosystems 2005, Springer Verlag, Berlin, (518 p.).
Maberly S.C., Reynolds C.S., George D., Haworth E.Y., Lund J.W.G. The sensitivity of freshwater planktonic communities to environmental change. Monitoring, Mechanisms and Models. Long-term Experiments in Agricultural and Ecological Sciences 1994, 387-405. CAB International, (R. A. J. Leigh, A.E.).
Mackey M.D., Mackey D.J., Higgins H.W., Wright S.W. CHEMTAX-a program for estimating class abundances from chemical markers. Application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 1996, 144:265-283.
Metcalf J.S., Codd G.A. Cyanotoxins. In Ecology of Cyanobacteria II. Their Diversity in Space and Time 2012, 651-675. Springer. B.A. Whitton (Ed.).
Oliver R.O., Hamilton D.P., Brookes J.D., Ganf G.G. Physiology, blooms and prediction of planktonic cyanobacteria. Ecology of Cyanobacteria II, Their Diversity in Space and Time 2012, 155-194. Springer. B.A. Whitton (Ed.).
Padisák J., Crossetti L.O., Naselli-Flores L. Use and misuse in the application of the phytoplankton functional classification, a critical review with updates. Hydrobiologia 2009, 621:1-19.
Paerl H.W., Huisman J. Blooms like it hot. Science 2008, 320:57-58.
Paerl H.W., Huisman J. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 2009, 1(1):27-37.
Peretyatko A., Teissier S., De Backer S., Triest L. Assessment of the risk of cyanobacterial bloom occurrence in urban ponds: probabilistic approach. Ann. Limnol. Int. J. Limnol. 2010, 46(2):121-133.
Recknagel F., French M., Harkonen P., Yabunaka K.-I. Artificial neural network approach for modelling and prediction of algal blooms. Ecol. Model. 1997, 96:11-28.
Recknagel F., Orr P., Cao H. Inductive reasoning and forecasting of population dynamics of Cylindrospermopsis raciborskii in three sub-tropical reservoirs by evolutionary computation. Harmful Algae 2014, 31:26-34.
Recknagel F., Adrian R., Köhler J., Cao H. Threshold quantification and short-term forecasting of Anabaena, Aphanizomenon and Microcystis in the polymictic eutrophic Lake Müggelsee (Germany) by inferential modelling using the hybrid evolutionary algorithm HEA. Hydrobiologia 2016, (in press).
Reichwaldt E.S., Ghadouani A. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics. Water Res. 2012, 46(5):1372-1393.
Reynolds C.S. Ecology of Phytoplankton 2006, Cambridge University Press, Cambridge.
Reynolds C.S., Huszar V., Kruk C., Naselli-Flores L., Melo S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 2002, 24(5):417-428.
Rigosi A., Hanson P., Hamilton D.P., Hipsey M.J., Rusak A., Bois J., Sparber K., Chorus I., Watkinson A.J., Qin B., Kim B., Brookes J.D. Determining the probability of cyanobacterial blooms: the application of Bayesian networks in multiple lake systems. Ecol. Appl. 2015, 25(1):186-199.
Sarmento H., Descy J.-P. Use of marker pigments and functional groups for assessing the status of phytoplankton assemblages in lakes. J. Appl. Phycol. 2008, 20:1001-1011.
Schindler D.W., Hecky R.E., Findlay D.L., Stainton M.P., Parker B.R., Paterson M.J., Beaty K.G., Lyng M., Kasian S.E.M. Eutrophication of lakes cannot be controlled by reducing nitrogen input, results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(32):11254-11258.
Shapiro J. The role of carbon dioxide in the initiation and maintenance of blue-green dominance in lakes. Freshw. Biol. 1997, 37:307-323.
Sommer U., Gliwicz Z.M., Lampert W., Duncan A. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 1986, 106:433-471.
Van Donk E., Ianora A., Vos M. Induced defences in marine and freshwater phytoplankton, a review. Hydrobiologia 2011, 668(1):3-19.
Van Wichelen J., van Gremberghe I., Vanormelingen P., Debeer A.-E., Leporcq B., Menzel D., Codd G.A., Descy J.-P., Vyverman W. Strong effects of amoebae grazing on the biomass and genetic structure of a Microcystis bloom (Cyanobacteria). Environ. Microbiol. Environ. Microbiol. Rep. 2010, 12(10):2797-2813.
Verspagen J.M.H., Snelder E.O.F.M., Visser P.M., Jöhnk K.D., Ibelings B.W., Mur L.R., Huisman J. Benthic-pelagic coupling in the population dynamics of the harmful cyanobacterium Microcystis. Freshw. Biol. 2005, 50(5):854-867.
Walsby A.E. Gas vesicles. Microbiol. Rev. 1994, 58:94-144.
Wei B., Sugiura N., Maekawa T. Use of artificial neural network in the prediction of algal blooms. Water Res. 2001, 35(8):2022-2028.
Wright S.W., Jeffrey S.W., Mantoura R.F.C., Llewellyn C.A., Bjørnland T., Repeta D., Welschmeyer N. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol. Prog. Ser. 1991, 77:183-196.
Zhang M., Duan H., Shi X., Yu Y., Kong F. Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change. Water Res. 2012, 46(2):442-452.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.