Article (Scientific journals)
Identifying the factors determining blooms of cyanobacteria in a set of shallow lakes
Descy, Jean-Pierre; Leprieur, Fabien; Pirlot, Samuel et al.
2016In Ecological Informatics, 34, p. 129-138
Peer Reviewed verified by ORBi
 

Files


Full Text
Descyetal.pdf
Publisher postprint (1.58 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
lakes; cyanobacteria; blooms; models; prediction; eutrophication
Abstract :
[en] There is a strong interest in developing a capacity to predict the occurrence of cyanobacteria blooms in lakes and to identify the measures to be taken to reduce water quality problems associated with the occurrence of potentially harmful taxa. Here we conducted a weekly to bi-weekly monitoring program on five shallow eutrophic lakes during two years, with the aim of gathering data on total cyanobacterial abundance, as estimated from marker pigments determined by HPLC analysis of phytoplankton extracts. We also determined bloom composition and measured weather and limnological variables. The most frequently identified taxa were Aphanizomenon flos-aquae, Microcystis aeruginosa, Planktothrix agardhii and Anabaena spp. We used the data base composed of a total of 306 observations and an adaptive regression trees method, the boosted regression tree (BRT), to develop predictive models of bloom occurrence and composition, based on environmental conditions. Data processing with BRT enabled the design of satisfactory prediction models of cyanobacterial abundance and of the occurrence of the main taxa. Phosphorus (total and soluble reactive phosphate), dissolved inorganic nitrogen, epilimnion temperature, photoperiod and euphotic depth were among the best predictive variables, contributing for at least 10 % in the models, and their relative contribution varied in accordance with the ecological traits of the taxa considered. Meteorological factors (wind, rainfall, surface irradiance) had a significant role in species selection. Such results may contribute to designing measures for bloom management in shallow lakes.
Research Center/Unit :
CIP - Centre d'Ingénierie des Protéines - ULiège
Disciplines :
Microbiology
Aquatic sciences & oceanology
Environmental sciences & ecology
Author, co-author :
Descy, Jean-Pierre 
Leprieur, Fabien
Pirlot, Samuel
Leporcq, Bruno
Van Wichelen, Jeroen
Peretyatko, Anatoly
Teissier, S
Codd, Geoff A
Triest, Ludwig
Vyverman, Wim
Wilmotte, Annick  ;  Université de Liège > Département des sciences de la vie > Physiologie et génétique bactériennes
Language :
English
Title :
Identifying the factors determining blooms of cyanobacteria in a set of shallow lakes
Alternative titles :
[fr] Identification des facteurs déterminant des proliférations de cyanobactéries dans un set de lacs peu profonds
Publication date :
2016
Journal title :
Ecological Informatics
ISSN :
1574-9541
eISSN :
1878-0512
Publisher :
Elsevier
Volume :
34
Pages :
129-138
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
B-BLOOMS2
Funders :
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique
F.R.S.-FNRS - Fonds de la Recherche Scientifique
DGRNE - Région wallonne. Direction générale des Ressources naturelles et de l'Environnement
Available on ORBi :
since 01 June 2016

Statistics


Number of views
159 (10 by ULiège)
Number of downloads
3 (2 by ULiège)

Scopus citations®
 
43
Scopus citations®
without self-citations
39
OpenCitations
 
35
OpenAlex citations
 
45

Bibliography


Similar publications



Contact ORBi