L.Zitvogel, A.Regnault, A.Lozier,. Eradication of established murine tumors using a novel cell-free vaccine:dendritic cell-derived exosomes. Nat Med 1998;4:594–600
L.L.Horstman, W.Jy, J.J.Jimenez,. New horizons in the analysis of circulating cell-derived microparticles. Keio J Med 2004;53:210–30
G.Raposo, H.W.Nijman, W.Stoorvogel,. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996;183:1161–72
J.Albanese, S.Meterissian, M.Kontogiannea,. Biologically active Fas antigen and its cognate ligand are expressed on plasma membrane-derived extracellular vesicles. Blood 1998;91:3862–74
C.Thery, A.Regnault, J.Garin,. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 1999;147:599–610
M.Record, C.Subra, S.Silvente-Poirot, M.Poirot Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 2011;81:1171–82
S.Mathivanan, H.Ji, R.J.Simpson Exosomes:extracellular organelles important in intercellular communication. J Proteomics 2010;73:1907–20
M.Mittelbrunn, F.Sanchez-Madrid Intercellular communication:diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol 2012;13:328–35
A.Zernecke, K.Bidzhekov, H.Noels,. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009;2:ra81
M.J.VanWijk, E.VanBavel, A.Sturk, R.Nieuwland Microparticles in cardiovascular diseases. Cardiovasc Res 2003;59:277–87
D.Karpman, A.L.Stahl, I.Arvidsson,. Complement interactions with blood cells, endothelial cells and microvesicles in thrombotic and inflammatory conditions. Adv Exp Med Biol 2015;865:19–42
M.Kanada, M.H.Bachmann, J.W.Hardy,. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci USA 2015;112:E1433–42
A.Aharon The role of extracellular vesicles in placental vascular complications. Thromb Res 2015;135:S23–5
L.Balaj, R.Lessard, L.Dai,. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2011;2:180. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040683/pdf/nihms270621.pdf
Y.Yuana, R.M.Bertina, S.Osanto Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb Haemost 2011;105:396–408
G.Muller Microvesicles/exosomes as potential novel biomarkers of metabolic diseases. Diabetes Metab Syndr Obes 2012;5:247–82
K.W.Witwer, E.I.Buzas, L.T.Bemis,. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2013;2. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760646/pdf/JEV-2-20360.pdf
D.D.Taylor, S.Shah Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods 2015;87:3–10
M.P.Oksvold, A.Kullmann, L.Forfang,. Expression of B-cell surface antigens in subpopulations of exosomes released from B-cell lymphoma cells. Clin Ther 2014;36:847–62. e841
S.Ospina-Prieto, W.Chaiwangyen, J.Herrmann,. MicroRNA-141 is upregulated in preeclamptic placentae and regulates trophoblast invasion and intercellular communication. Transl Res 2016;172:61–72
M.I.Zonneveld, A.R.Brisson, M.J.van Herwijnen,. Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures. J Extracell Vesicles 2014;3. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4139932/pdf/JEV-3-24215.pdf
A.Sabapatha, C.Gercel-Taylor, D.D.Taylor Specific isolation of placenta-derived exosomes from the circulation of pregnant women and their immunoregulatory consequences. Am J Reprod Immunol 2006;56:345–55
J.Schageman, E.Zeringer, M.Li,. The complete exosome workflow solution:from isolation to characterization of RNA cargo. Biomed Res Int 2013;2013:253957. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800616/pdf/BMRI2013-253957.pdf
J.Van Deun, P.Mestdagh, R.Sormunen,. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles 2014;3:24858. Available from:http://dx.doi.org/10.3402/jev.v3.24858
E.M.Mora, S.Alvarez-Cubela, E.Oltra Biobanking of exosomes in the era of precision medicine:are we there yet? Int J Mol Sci 2015;17:pii E13. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730260/
V.Sokolova, A.K.Ludwig, S.Hornung,. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 2011;87:146–50
S.Boukouris, S.Mathivanan Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin Appl 2015;9:358–67
H.Kalra, C.G.Adda, M.Liem,. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 2013;13:3354–64
M.Yanez-Mo, P.R.Siljander, Z.Andreu,. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015;4:27066
Q.Ge, Y.Zhou, J.Lu,. miRNA in plasma exosome is stable under different storage conditions. Molecules 2014;19:1568–75
L.Cheng, R.A.Sharples, B.J.Scicluna, A.F.Hill Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles 2014;3:23743. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968297/pdf/JEV-3-23743.pdf
D.Sun, X.Zhuang, X.Xiang,. A novel nanoparticle drug delivery system:the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 2010;18:1606–14
B.Gyorgy, T.G.Szabo, M.Pasztoi,. Membrane vesicles, current state-of-the-art:emerging role of extracellular vesicles. Cell Mol Life Sci 2011;68:2667–88
Y.Yuana, R.I.Koning, M.E.Kuil,. Cryo-electron microscopy of extracellular vesicles in fresh plasma. J Extracell Vesicles 2013;2. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3895263/pdf/JEV-2-21494.pdf
E.van der Pol, A.G.Hoekstra, A.Sturk,. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost 2010;8:2596–607
E.van der Pol, M.J.van Gemert, A.Sturk,. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J Thromb Haemost 2012;10:919–30
S.Robert, R.Lacroix, P.Poncelet,. High-sensitivity flow cytometry provides access to standardized measurement of small-size microparticles–brief report. Arterioscler Thromb Vasc Biol 2012;32:1054–8
C.Y.Soo, Y.Song, Y.Zheng,. Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology 2012;136:192–7
R.A.Dragovic, C.Gardiner, A.S.Brooks,. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 2011;7:780–8
H.T.Muturi, J.D.Dreesen, E.Nilewski,. Tumor and endothelial cell-derived microvesicles carry distinct CEACAMs and influence T-cell behavior. PLoS One 2013;8:e74654
C.Gardiner, Y.J.Ferreira, R.A.Dragovic,. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2013;2. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760643/pdf/JEV-2-19671.pdf
Y.Y.Yeh, H.G.Ozer, A.M.Lehman,. Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced secretion by activation of BCR signaling. Blood 2015;125:3297–305
A.Mehdiani, A.Maier, A.Pinto,. An innovative method for exosome quantification and size measurement. J Vis Exp 2015;50974. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354536/pdf/jove-95-50974.pdf
D.K.Jeppesen, M.L.Hvam, B.Primdahl-Bengtson,. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles 2014;3:25011. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224706/
J.C.Akers, V.Ramakrishnan, J.P.Nolan,. Comparative analysis of technologies for quantifying extracellular vesicles (EVs) in clinical cerebrospinal fluids (CSF). PLoS One 2016;11:e0149866
E.van der Pol, F.A.Coumans, A.E.Grootemaat,. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost 2014;12:1182–92
I.Tatischeff, E.Larquet, J.M.Falcon-Perez,. Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy. J Extracell Vesicles 2012;1. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760651/pdf/JEV-1-19179.pdf
J.E.Italiano, Jr., A.T.Mairuhu, R.Flaumenhaft Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol 2010;17:578–84
P.R.Siljander Platelet-derived microparticles – an updated perspective. Thromb Res 2011;127 Suppl:S30–3
W.L.Dean, M.J.Lee, T.D.Cummins,. Proteomic and functional characterisation of platelet microparticle size classes. Thromb Haemost 2009;102:711–18
R.Flaumenhaft Formation and fate of platelet microparticles. Blood Cells Mol Dis 2006;36:182–7
M.L.Rand, H.Wang, K.W.Bang,. Rapid clearance of procoagulant platelet-derived microparticles from the circulation of rabbits. J Thromb Haemost 2006;4:1621–3
T.Villmow, B.Kemkes-Matthes, A.C.Matzdorff Markers of platelet activation and platelet-leukocyte interaction in patients with myeloproliferative syndromes. Thromb Res 2002;108:139–45
H.F.Heijnen, A.E.Schiel, R.Fijnheer,. Activated platelets release two types of membrane vesicles:microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 1999;94:3791–9
M.T.Aatonen, T.Ohman, T.A.Nyman,. Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicles 2014;3. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125723/pdf/JEV-3-24692.pdf
P.Diehl, A.Fricke, L.Sander,. Microparticles:major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res 2012;93:633–44
E.Biro, J.W.Akkerman, F.J.Hoek,. The phospholipid composition and cholesterol content of platelet-derived microparticles:a comparison with platelet membrane fractions. J Thromb Haemost 2005;3:2754–63
M.Merten, R.Pakala, P.Thiagarajan, C.R.Benedict Platelet microparticles promote platelet interaction with subendothelial matrix in a glycoprotein IIb/IIIa-dependent mechanism. Circulation 1999;99:2577–82
R.A.Preston, W.Jy, J.J.Jimenez,. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 2003;41:211–17
P.M.van der Zee, E.Biro, Y.Ko,. P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin Chem 2006;52:657–64
P.Diehl, F.Nagy, V.Sossong,. Increased levels of circulating microparticles in patients with severe aortic valve stenosis. Thromb Haemost 2008;99:711–19
O.Rubin, D.Crettaz, G.Canellini,. Microparticles in stored red blood cells:an approach using flow cytometry and proteomic tools. Vox Sang 2008;95:288–97
M.D.Shah, A.L.Bergeron, J.F.Dong, J.A.Lopez Flow cytometric measurement of microparticles:pitfalls and protocol modifications. Platelets 2008;19:365–72
N.Amabile, A.P.Guerin, A.Leroyer,. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J Am Soc Nephrol 2005;16:3381–8
M.J.VanWijk, R.Nieuwland, K.Boer,. Microparticle subpopulations are increased in preeclampsia:possible involvement in vascular dysfunction? Am J Obstet Gynecol 2002;187:450–6
B.Hugel, M.C.Martinez, C.Kunzelmann, J.M.Freyssinet Membrane microparticles:two sides of the coin. Physiology (Bethesda) 2005;20:22–7
R.Liu, I.Klich, J.Ratajczak,. Erythrocyte-derived microvesicles may transfer phosphatidylserine to the surface of nucleated cells and falsely ‘mark’ them as apoptotic. Eur J Haematol 2009;83:220–9
R.M.Kini Structure-function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon 2005;45:1147–61
M.Foller, S.M.Huber, F.Lang Erythrocyte programmed cell death. IUBMB Life 2008;60:661–8
G.J.Bosman, J.M.Werre, F.L.Willekens, V.M.Novotny Erythrocyte ageing in vivo and in vitro:structural aspects and implications for transfusion. Transfus Med 2008;18:335–47
E.J.van Beers, M.C.Schaap, R.J.Berckmans,. Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica 2009;94:1513–19
M.Westerman, A.Pizzey, J.Hirschman,. Microvesicles in haemoglobinopathies offer insights into mechanisms of hypercoagulability, haemolysis and the effects of therapy. Br J Haematol 2008;142:126–35
G.J.Kato, V.McGowan, R.F.Machado,. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood 2006;107:2279–85
A.Rank, R.Nieuwland, B.Toth,. Microparticles for diagnosis of graft-versus-host disease after allogeneic stem transplantation. Transplantation 2011;92:244–50
D.Nantakomol, A.M.Dondorp, S.Krudsood,. Circulating red cell-derived microparticles in human malaria. J Infect Dis 2011;203:700–6
B.Liu, C.Liao, J.Chen,. Significance of increasing adhesion of cord blood hematopoietic cells and a new method:platelet microparticles. Am J Hematol 2003;74:216–17
B.Liu, J.S.Chen, M.Cao,. Platelet characteristic antigens of CD34+ cells in cryopreserved cord blood:a study of platelet-derived microparticles in transplant processing. Vox Sang 2004;87:96–104
J.Ratajczak, M.Kucia, K.Mierzejewska,. Paracrine proangiopoietic effects of human umbilical cord blood-derived purified CD133+ cells–implications for stem cell therapies in regenerative medicine. Stem Cells Dev 2013;22:422–30
S.Schweintzger, A.Schlagenhauf, B.Leschnik,. Microparticles in newborn cord blood:slight elevation after normal delivery. Thromb Res 2011;128:62–7
M.Uszynski, E.Zekanowska, W.Uszynski,. Microparticles (MPs), tissue factor (TF) and tissue factor inhibitor (TFPI) in cord blood plasma. A preliminary study and literature survey of procoagulant properties of MPs. Eur J Obstet Gynecol Reprod Biol 2011;158:37–41
S.Utsugi-Kobukai, H.Fujimaki, C.Hotta,. MHC class I-mediated exogenous antigen presentation by exosomes secreted from immature and mature bone marrow derived dendritic cells. Immunol Lett 2003;89:125–31
B.Gansuvd, M.Hagihara, A.Higuchi,. Umbilical cord blood dendritic cells are a rich source of soluble HLA-DR:synergistic effect of exosomes and dendritic cells on autologous or allogeneic T-Cell proliferation. Hum Immunol 2003;64:427–39
M.A.Roos, L.Gennero, T.Denysenko,. Microparticles in physiological and in pathological conditions. Cell Biochem Funct 2010;28:539–48
B.Huppertz, H.G.Frank, J.C.Kingdom,. Villous cytotrophoblast regulation of the syncytial apoptotic cascade in the human placenta. Histochem Cell Biol 1998;110:495–508
M.Knight, C.W.Redman, E.A.Linton, I.L.Sargent Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies. Br J Obstet Gynaecol 1998;105:632–40
C.W.Redman, I.L.Sargent Placental debris, oxidative stress and pre-eclampsia. Placenta 2000;21:597–602
C.W.Redman, D.S.Tannetta, R.A.Dragovic,. Review:does size matter? Placental debris and the pathophysiology of pre-eclampsia. Placenta 2012;33:S48–54
R.A.Dragovic, G.P.Collett, P.Hole,. Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence nanoparticle tracking analysis. Methods 2015;87:64–74
C.Gohner, M.Weber, D.S.Tannetta,. A new enzyme-linked sorbent assay (ELSA) to quantify syncytiotrophoblast extracellular vesicles in biological fluids. Am J Reprod Immunol 2015;73:582–8
L.Mincheva-Nilsson, V.Baranov The role of placental exosomes in reproduction. Am J Reprod Immunol 2010;63:520–33
C.W.Redman, I.L.Sargent Circulating microparticles in normal pregnancy and pre-eclampsia. Placenta 2008;29:S73–7
C.W.Redman, I.L.Sargent Latest advances in understanding preeclampsia. Science 2005;308:1592–4
S.Atay, C.Gercel-Taylor, M.Kesimer, D.D.Taylor Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells. Exp Cell Res 2011;317:1192–202
A.K.Gupta, C.Rusterholz, B.Huppertz,. A comparative study of the effect of three different syncytiotrophoblast micro-particles preparations on endothelial cells. Placenta 2005;26:59–66
S.Di Santo, R.Sager, A.C.Andres,. Dual in vitro perfusion of an isolated cotyledon as a model to study the implication of changes in the third trimester placenta on preeclampsia. Placenta 2007;28:S23–32
S.J.Germain, G.P.Sacks, S.R.Sooranna,. Systemic inflammatory priming in normal pregnancy and preeclampsia:the role of circulating syncytiotrophoblast microparticles. J Immunol 2007;178:5949–56
J.Southcombe, D.Tannetta, C.Redman, I.Sargent The immunomodulatory role of syncytiotrophoblast microvesicles. PLoS One 2011;6:e20245
C.Gardiner, D.S.Tannetta, C.A.Simms,. Syncytiotrophoblast microvesicles released from pre-eclampsia placentae exhibit increased tissue factor activity. PLoS One 2011;6:e26313
S.Guller, Z.Tang, Y.Y.Ma,. Protein composition of microparticles shed from human placenta during placental perfusion:potential role in angiogenesis and fibrinolysis in preeclampsia. Placenta 2011;32:63–9
M.Hedlund, A.C.Stenqvist, O.Nagaeva,. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression:evidence for immunosuppressive function. J Immunol 2009;183:340–51
S.Baig, N.Kothandaraman, J.Manikandan,. Proteomic analysis of human placental syncytiotrophoblast microvesicles in preeclampsia. Clin Proteomics 2014;11:40. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247627/pdf/12014_2014_Article_82.pdf
M.D.Mitchell, H.N.Peiris, M.Kobayashi,. Placental exosomes in normal and complicated pregnancy. Am J Obstet Gynecol 2015;213:S173–81
S.Baig, J.Y.Lim, A.Z.Fernandis,. Lipidomic analysis of human placental syncytiotrophoblast microvesicles in adverse pregnancy outcomes. Placenta 2013;34:436–42
L.Ghulmiyyah, B.Sibai Maternal mortality from preeclampsia/eclampsia. Semin Perinatol 2012;36:56–9
C.W.Redman, I.L.Sargent. Pre-eclampsia, the placenta and the maternal systemic inflammatory response-a review. Placenta 2003;24:S21–7
F.Bretelle, F.Sabatier, D.Desprez,. Circulating microparticles:a marker of procoagulant state in normal pregnancy and pregnancy complicated by preeclampsia or intrauterine growth restriction. Thromb Haemost 2003;89:486–92
G.N.Chironi, C.M.Boulanger, A.Simon,. Endothelial microparticles in diseases. Cell Tissue Res 2009;335:143–51
Y.Chen, Y.Huang, R.Jiang, Y.Teng Syncytiotrophoblast-derived microparticle shedding in early-onset and late-onset severe pre-eclampsia. Int J Gynaecol Obstet 2012;119:234–8
A.Tesse, F.Meziani, E.David,. Microparticles from preeclamptic women induce vascular hyporeactivity in vessels from pregnant mice through an overproduction of NO. Am J Physiol Heart Circ Physiol 2007;293:H520–5
C.A.Lok, J.Jebbink, R.Nieuwland,. Leukocyte activation and circulating leukocyte-derived microparticles in preeclampsia. Am J Reprod Immunol 2009;61:346–59
F.Meziani, A.Tesse, E.David,. Shed membrane particles from preeclamptic women generate vascular wall inflammation and blunt vascular contractility. Am J Pathol 2006;169:1473–83
V.H.Gonzalez-Quintero, L.P.Smarkusky, J.J.Jimenez,. Elevated plasma endothelial microparticles:preeclampsia versus gestational hypertension. Am J Obstet Gynecol 2004;191:1418–24
U.Kammerer, M.von Wolff, U.R.Markert Immunology of human endometrium. Immunobiology 2004;209:569–74
A.Braunschweig, T.G.Poehlmann, S.Busch,. Signal transducer and activator of transcription 3 (STAT3) and suppressor of cytokine signaling (SOCS3) balance controls cytotoxicity and IL-10 expression in decidual-like natural killer cell line NK-92. Am J Reprod Immunol 2011;66:329–35
L.Lugini, S.Cecchetti, V.Huber,. Immune surveillance properties of human NK cell-derived exosomes. J Immunol 2012;189:2833–42
M.Kornek, D.Schuppan Microparticles:modulators and biomarkers of liver disease. J Hepatol 2012;57:1144–6
B.K.Pliyev, M.V.Kalintseva, S.V.Abdulaeva,. Neutrophil microparticles modulate cytokine production by natural killer cells. Cytokine 2014;65:126–9
E.Laresgoiti-Servitje A leading role for the immune system in the pathophysiology of preeclampsia. J Leukoc Biol 2013;94:247–57
L.Fernandez-Messina, C.Gutierrez-Vazquez, E.Rivas-Garcia,. Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell 2015;107:61–77
T.G.Poehlmann, A.Schaumann, S.Busch,. Inhibition of term decidual NK cell cytotoxicity by soluble HLA-G1. Am J Reprod Immunol 2006;56:275–85
M.Record Intercellular communication by exosomes in placenta:a possible role in cell fusion? Placenta 2014;35:297–302
F.Pucci, M.J.Pittet Molecular pathways:tumor-derived microvesicles and their interactions with immune cells in vivo. Clin Cancer Res 2013;19:2598–604
C.Holden Stem cells. Controversial marrow cells coming into their own? Science 2007;315:760–1
P.M.Elliott, W.H.Inman Volume of liquor amnii in normal and abnormal pregnancy. Lancet 1961;2:835–40
F.H.Bloomfield, P.L.van Zijl, M.K.Bauer, J.E.Harding Effects of intrauterine growth restriction and intraamniotic insulin-like growth factor-I treatment on blood and amniotic fluid concentrations and on fetal gut uptake of amino acids in late-gestation ovine fetuses. J Pediatr Gastroenterol Nutr 2002;35:287–97
R.J.Benzie, T.A.Doran, J.L.Harkins,. Composition of the amniotic fluid and maternal serum in pregnancy. Am J Obstet Gynecol 1974;119:798–810
W.Uszynski, E.Zekanowska, M.Uszynski,. New observations on procoagulant properties of amniotic fluid:microparticles (MPs) and tissue factor-bearing MPs (MPs-TF), comparison with maternal blood plasma. Thromb Res 2013;132:757–60
S.Keller, J.Ridinger, A.K.Rupp,. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 2011;9:86. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118335/pdf/1479-5876-9-86.pdf
S.Liu, L.Wei, Y.Zhang,. Procoagulant activity and cellular origin of microparticles in human amniotic fluid. Thromb Res 2014;133:645–51
E.Mantikou, M.A.Youssef, M.van Wely,. Embryo culture media and IVF/ICSI success rates:a systematic review. Hum Reprod Update 2013;19:210–20
J.Kropp, S.M.Salih, H.Khatib Expression of microRNAs in bovine and human pre-implantation embryo culture media. Front Genet 2014;5:91. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006060/pdf/fgene-05-00091.pdf
J.Nyalwidhe, T.Burch, S.Bocca,. The search for biomarkers of human embryo developmental potential in IVF:a comprehensive proteomic approach. Mol Hum Reprod 2013;19:250–63
M.K.Irmak, Y.Oztas, E.Oztas Integration of maternal genome into the neonate genome through breast milk mRNA transcripts and reverse transcriptase. Theor Biol Med Model 2012;9:20. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413567/pdf/1742-4682-9-20.pdf
C.Admyre, S.M.Johansson, K.R.Qazi,. Exosomes with immune modulatory features are present in human breast milk. J Immunol 2007;179:1969–78
C.Lasser, V.S.Alikhani, K.Ekstrom,. Human saliva, plasma and breast milk exosomes contain RNA:uptake by macrophages. J Transl Med 2011;9:9. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033821/pdf/1479-5876-9-9.pdf
P.Torregrosa Paredes, C.Gutzeit, S.Johansson,. Differences in exosome populations in human breast milk in relation to allergic sensitization and lifestyle. Allergy 2014;69:463–71
N.Kosaka, H.Izumi, K.Sekine, T.Ochiya microRNA as a new immune-regulatory agent in breast milk. Silence 2010;1:7. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847997/pdf/1758-907X-1-7.pdf
Q.Zhou, M.Li, X.Wang,. Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci 2012;8:118–23
T.I.Naslund, D.Paquin-Proulx, P.T.Paredes,. Exosomes from breast milk inhibit HIV-1 infection of dendritic cells and subsequent viral transfer to CD4+ T cells. AIDS 2014;28:171–80
M.M.Kasi, F.Mahrukh, S.M.Naseer Baloch,. Studies on human cervical mucus:the effect of proteases on cervical mucus glycoproteins functions. Jour Chem Soc Pak 1997;19:153–62
F.Flori, F.Secciani, A.Capone,. Menstrual cycle-related sialidase activity of the female cervical mucus is associated with exosome-like vesicles. Fertil Steril 2007;88:1212–19
A.A.Al-Dossary, E.E.Strehler, P.A.Martin-Deleon Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus:association with oviductal exosomes and uptake in sperm. PLoS One 2013;8:e80181
O.Twu, N.de Miguel, G.Lustig,. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host:parasite interactions. PLoS Pathog 2013;9:e1003482
E.Frohlich, E.Roblegg Mucus as barrier for drug delivery by nanoparticles. J Nanosci Nanotechnol 2014;14:126–36
K.Khanvilkar, M.D.Donovan, D.R.Flanagan Drug transfer through mucus. Adv Drug Deliv Rev 2001;48:173–93
D.Tannetta, R.Dragovic, Z.Alyahyaei, J.Southcombe Extracellular vesicles and reproduction-promotion of successful pregnancy. Cell Mol Immunol 2014;11:548–63
Y.H.Ng, S.Rome, A.Jalabert,. Endometrial exosomes/microvesicles in the uterine microenvironment:a new paradigm for embryo-endometrial cross talk at implantation. PLoS One 2013;8:e58502
A.G.Sha, J.L.Liu, X.M.Jiang,. Genome-wide identification of micro-ribonucleic acids associated with human endometrial receptivity in natural and stimulated cycles by deep sequencing. Fertil Steril 2011;96:150–5. e155
S.S.Suarez Regulation of sperm storage and movement in the mammalian oviduct. Int J Dev Biol 2008;52:455–62
P.Coy, F.A.Garcia-Vazquez, P.E.Visconti, M.Aviles Roles of the oviduct in mammalian fertilization. Reproduction 2012;144:649–60
S.S.Suarez Interactions of spermatozoa with the female reproductive tract:inspiration for assisted reproduction. Reprod Fertil Dev 2007;19:103–10
I.Lauschová Secretory cells and morphological manifestation of secretion in the mouse oviduct. Scripta Medica Facultatis Medicae Universitatis Brunensis Masarykianae 2003;76:203–13
G.Frenette, R.Sullivan Prostasome-like particles are involved in the transfer of P25b from the bovine epididymal fluid to the sperm surface. Mol Reprod Dev 2001;59:115–21
F.Saez, G.Frenette, R.Sullivan Epididymosomes and prostasomes:their roles in posttesticular maturation of the sperm cells. J Androl 2003;24:149–54
A.Boyer, A.K.Goff, D.Boerboom WNT signaling in ovarian follicle biology and tumorigenesis. Trends Endocrinol Metab 2010;21:25–32
J.J.Eppig Oocyte control of ovarian follicular development and function in mammals. Reproduction 2001;122:829–38
P.G.Knight, C.Glister TGF-beta superfamily members and ovarian follicle development. Reproduction 2006;132:191–206
R.J.Rodgers, H.F.Irving-Rodgers Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod 2010;82:1021–9
A.Revelli, L.Delle Piane, S.Casano,. Follicular fluid content and oocyte quality:from single biochemical markers to metabolomics. Reprod Biol Endocrinol 2009;7:40
J.C.da Silveira, D.N.Veeramachaneni, Q.A.Winger,. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins:a possible new form of cell communication within the ovarian follicle. Biol Reprod 2012;86:71
M.M.Sohel, M.Hoelker, S.S.Noferesti,. Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid:implications for bovine oocyte developmental competence. PLoS One 2013;8:e78505
M.Santonocito, M.Vento, M.R.Guglielmino,. Molecular characterization of exosomes and their microRNA cargo in human follicular fluid:bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril 2014;102:1751–61
J.C.da Silveira, E.M.Carnevale, Q.A.Winger, G.J.Bouma Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare. Reprod Biol Endocrinol 2014;12:44
A.Diez-Fraile, T.Lammens, K.Tilleman,. Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Hum Fertil (Camb) 2014;17:90–8
Q.Sang, Z.Yao, H.Wang,. Identification of microRNAs in human follicular fluid:characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab 2013;98:3068–79
J.L.Dacheux, C.Belleannee, B.Guyonnet,. The contribution of proteomics to understanding epididymal maturation of mammalian spermatozoa. Syst Biol Reprod Med 2012;58:197–210
P.V.Lishko, Y.Kirichok, D.Ren,. The control of male fertility by spermatozoan ion channels. Annu Rev Physiol 2012;74:453–75
W.W.Shum, N.Da Silva, D.Brown, S.Breton Regulation of luminal acidification in the male reproductive tract via cell-cell crosstalk. J Exp Biol 2009;212:1753–61
R.Sullivan, F.Saez Epididymosomes, prostasomes, and liposomes:their roles in mammalian male reproductive physiology. Reproduction 2013;146:R21–35
A.Poliakov, M.Spilman, T.Dokland,. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate 2009;69:159–67
B.O.Nilsson, M.Jin, B.Einarsson,. Monoclonal antibodies against human prostasomes. Prostate 1998;35:178–84
G.Ronquist, I.Brody The prostasome:its secretion and function in man. Biochim Biophys Acta 1985;822:203–18
S.Shoji-Kawata, R.Sumpter, M.Leveno,. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 2013;494:201–6
M.Aalberts, T.A.Stout, W.Stoorvogel Prostasomes:extracellular vesicles from the prostate. Reproduction 2014;147:R1–14
G.Aumuller, H.Renneberg, P.J.Schiemann,. The role of apocrine released proteins in the post-testicular regulation of human sperm function. Adv Exp Med Biol 1997;424:193–219
G.E.Sahlen, L.Egevad, A.Ahlander,. Ultrastructure of the secretion of prostasomes from benign and malignant epithelial cells in the prostate. Prostate 2002;53:192–9
G.Arvidson, G.Ronquist, G.Wikander, A.C.Ojteg Human prostasome membranes exhibit very high cholesterol/phospholipid ratios yielding high molecular ordering. Biochim Biophys Acta 1989;984:167–73
M.Aalberts, F.M.van Dissel-Emiliani, N.P.van Adrichem,. Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans. Biol Reprod 2012;86:82
M.Stridsberg, R.Fabiani, A.Lukinius, G.Ronquist Prostasomes are neuroendocrine-like vesicles in human semen. Prostate 1996;29:287–95
S.Carolina, J.R.Pamela, C.N.Colleen Exosomes in prostate cancer:putting together the pieces of a puzzle. Cancers 2013;5:1522–44
G.Ronquist Prostasomes are mediators of intercellular communication:from basic research to clinical implications. J Intern Med 2012;271:400–13
G.Arienti, E.Carlini, C.Saccardi, C.A.Palmerini Role of human prostasomes in the activation of spermatozoa. J Cell Mol Med 2004;8:77–84
G.Arienti, E.Carlini, A.Polci,. Fatty acid pattern of human prostasome lipid. Arch Biochem Biophys 1998;358:391–5
R.Fabiani, L.Johansson, O.Lundkvist, G.Ronquist Prolongation and improvement of prostasome promotive effect on sperm forward motility. Eur J Obstet Gynecol Reprod Biol 1995;58:191–8
K.H.Park, B.J.Kim, J.Kang,. Ca2+ signaling tools acquired from prostasomes are required for progesterone-induced sperm motility. Sci Signal 2011;4:ra31
H.Pons-Rejraji, C.Artonne, B.Sion,. Prostasomes:inhibitors of capacitation and modulators of cellular signalling in human sperm. Int J Androl 2011;34:568–80
P.M.Wandernoth, M.Raubuch, N.Mannowetz,. Role of carbonic anhydrase IV in the bicarbonate-mediated activation of murine and human sperm. PLoS One 2010;5:e15061. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991337/pdf/pone.0015061.pdf
G.S.Griffiths, D.S.Galileo, K.Reese, P.A.Martin-Deleon Investigating the role of murine epididymosomes and uterosomes in GPI-linked protein transfer to sperm using SPAM1 as a model. Mol Reprod Dev 2008;75:1627–36
C.R.Austin. Observations on the penetration of the sperm in the mammalian egg. Aust J Sci Res B 1951;4:581–96
M.C.Chang Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 1951;168:697–8
F.M.Flesch, J.F.Brouwers, P.F.Nievelstein,. Bicarbonate stimulated phospholipid scrambling induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane. J Cell Sci 2001;114:3543–55
I.A.Rooney, J.P.Atkinson, E.S.Krul,. Physiologic relevance of the membrane attack complex inhibitory protein CD59 in human seminal plasma:CD59 is present on extracellular organelles (prostasomes), binds cell membranes, and inhibits complement-mediated lysis. J Exp Med 1993;177:1409–20
P.Mitchell, J.Welton, J.Staffurth,. Can urinary exosomes act as treatment response markers in prostate cancer? J Transl Med 2009;7:4 Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631476/pdf/1479-5876-7-4.pdf
R.J.Bryant, T.Pawlowski, J.W.Catto,. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer 2012;106:768–74
T.Pisitkun, R.F.Shen, M.A.Knepper Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 2004;101:13368–73
B.W.van Balkom, T.Pisitkun, M.C.Verhaar, M.A.Knepper Exosomes and the kidney:prospects for diagnosis and therapy of renal diseases. Kidney Int 2011;80:1138–45
P.G.Moon, S.You, J.E.Lee,. Urinary exosomes and proteomics. Mass Spectrom Rev 2011;30:1185–202
M.Salih, R.Zietse, E.J.Hoorn Urinary extracellular vesicles and the kidney:biomarkers and beyond. Am J Physiol Renal Physiol 2014;306:F1251–9
A.Kalani, A.Mohan, M.M.Godbole,. Wilm’s tumor-1 protein levels in urinary exosomes from diabetic patients with or without proteinuria. PLoS One 2013;8:e60177
A.L.Sun, J.T.Deng, G.J.Guan,. Dipeptidyl peptidase-IV is a potential molecular biomarker in diabetic kidney disease. Diab Vasc Dis Res 2012;9:301–8
L.L.Lv, Y.H.Cao, M.M.Pan,. CD2AP mRNA in urinary exosome as biomarker of kidney disease. Clin Chim Acta 2014;428:26–31
M.Ramirez-Alvarado, C.J.Ward, B.Q.Huang,. Differences in immunoglobulin light chain species found in urinary exosomes in light chain amyloidosis (Al). PLoS One 2012;7:e38061
S.Alvarez, C.Suazo, A.Boltansky,. Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation. Transplant Proc 2013;45:3719–23
N.van der Lubbe, P.M.Jansen, M.Salih,. The phosphorylated sodium chloride cotransporter in urinary exosomes is superior to prostasin as a marker for aldosteronism. Hypertension 2012;60:741–8
J.L.Welton, S.Khanna, P.J.Giles,. Proteomics analysis of bladder cancer exosomes. Mol Cell Proteomics 2010;9:1324–38
C.L.Chen, Y.F.Lai, P.Tang,. Comparative and targeted proteomic analyses of urinary microparticles from bladder cancer and hernia patients. J Proteome Res 2012;11:5611–29
F.Raimondo, L.Morosi, S.Corbetta,. Differential protein profiling of renal cell carcinoma urinary exosomes. Mol Biosyst 2013;9:1220–33
S.Principe, E.E.Jones, Y.Kim,. In-depth proteomic analyses of exosomes isolated from expressed prostatic secretions in urine. Proteomics 2013;13:1667–71
J.Nilsson, J.Skog, A.Nordstrand,. Prostate cancer-derived urine exosomes:a novel approach to biomarkers for prostate cancer. Br J Cancer 2009;100:1603–7
I.V.Bijnsdorp, A.A.Geldof, M.Lavaei,. Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. J Extracell Vesicles 2013;2. Available from:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873120/pdf/JEV-2-22097.pdf
S.Dijkstra, I.L.Birker, F.P.Smit,. Prostate cancer biomarker profiles in urinary sediments and exosomes. J Urol 2014;191:1132–8