Khush G.S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 2005, 59:1-6.
Lee N.L., Rush M.C. Rice sheath blight: a major rice disease. Plant Dis. 1983, 67:829-832.
Ou S.H. Pathogen variability and host resistance in rice blast disease. Annu. Rev. Phytopathol. 1980, 18:167-187.
Talbot N.J. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 2003, 57:177-202.
Dean R., Van Kan J.A.L., Pretorius Z.A., Hammond-Kosack K.E., Di Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J., Foster G.D. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13:414-430.
Howard R.J., Ferrari M.A., Roach D.H., Money N.P. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci. U. S. A. 1991, 88:11281-11284.
Mew T.W. SHIP - A different approach in doing research. Proceedings of the Final Workshop of the Seed Health Improvement Sub-project of Poverty Elimination through Rice Research Assistance (PETRRA) 2004, Bangladesh Agricultural Research Council, Dhaka, Bangladesh.
Zheng A., Lin R., Zhang D., Qin P., Xu L., Ai P., et al. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat. Commun. 2013, 4(1424):1-10.
Song F., Goodman R.M. Molecular biology of disease resistance in rice. Physiol. Mol. Plant Pathol. 2001, 59:1-11.
Pieterse C.M.J., Leon-Reyes A., Van der Ent S., Van Wees S.C.M. Networking by small-molecules hormones in plant immunity. Nat. Chem. Biol. 2009, 5:308-316.
Grant M., Lamb C. Systemic immunity. Curr. Opin. Plant Biol. 2006, 9:414-420.
Van Loon L.C., Bakker P.A.H.M., Pieterse C.M.J. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 1998, 36:453-483.
Pieterse C.M.J., Van Wees S.C.M., Van Pelt J.A., Knoester M., Laan R., Gerrits H., et al. Anovel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell. 1998, 10:1571-1580.
Verhagen B.M.W., Glazebrook J., Zhu T., Chang H.S., Van Loon L.C., Pieterse C.M.J. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol. Plant-Microbe Interact. 2004, 17:895-908.
De Vleesschauwer D., Djavaheri M., Bakker P.A.H.M., Höfte M. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol. 2008, 148:1996-2012.
De Vleesschauwer D., Höfte M. Rhizobacteria induced systemic resistance. Adv. Bot. Res. 2009, 51:223-281.
Nandakumar R., Babu S., Viswanathan R., Raguchander T., Samiyappan R. Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biol. Biochem. 2001, 33:603-612.
Rabindran R., Vidhyasekaran P. Development of a formulation of Pseudomonas fluorescens PfALR2 for management of rice sheath blight. Crop Prot. 1996, 8:715-721.
Kumar K.V.K., Yellareddygari S.K.R., Reddy M.S., Kloepper J.W., Lawrence K.S., Zhou X.G., et al. Efficacy of Bacillus subtilis MBI 600 Against Sheath Blight Caused by Rhizoctonia solani and on Growth and Yield of Rice. Rice Sci. 2012, 19:55-63.
De Vleesschauwer D., Cornelis P., Höfte M. Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol. Plant-Microbe Interact. 2006, 19:1406-1419.
Raaijmakers J.M., De Bruijn I., De Kock M.J.D. Cyclic lipopeptide production by plant-associated Pseudomonas species: diversity, activity, biosynthesis and regulation. Mol. Plant-Microbe Interact. 2006, 19:699-710.
Jacques P. Surfactin and other lipopeptides from Bacillus spp. Biosurfactants, Microbiology Monographs 2011, vol. 20:57-91. Springer-Verlag, Berlin Heidelberg. Germany.
Ongena M., Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008, 16(3):115-125.
Raaijmakers J.M., De Bruijn O., Nybroe O., Ongena M. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. Fed. Eur. Microbiol. Soc. Microbiol. Rev. 2010, 34(6):1037-1062.
D'aes J., De Maeyer K., Pauwelyn P., Höfte M. Biosurfactants in plant-Pseudomonas interactions and their importance to biocontrol. Environ. Microbiol. Reports 2010, 2(3):359-372.
Deravel J., Lemière S., Coutte F., Krier F., Van Hese N., Béchet M., et al. Mycosubtilin and surfactin are efficient, low ecotoxicity molecules for the biocontrol of lettuce downy mildew. Appl. Microbiol. Biotechnol. 2014, 98(14):6255-6264.
Coutte F., Leclere V., Bechet M., Guez J.S., Lecouturier D., Chollet-Imbert M., et al. Effect of pps diruption and constitutive expression of sfrA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivates. J.Appl. Microbiol. 2010, 109(2):480-491.
Bechet M., Guy-Catera J., Guez J.S., Chihib N., Coucheney F., Coutte F., et al. Production of a novel mixture of mycosubtilins by mutants of Bacillus subtilis. Bioresour. Technol. 2013, 145:264-270.
Ongena M., Jourdan E., Adam A., Paquot M., Brans A., Joris B., et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 2007, 9:1084-1090.
Baba A., Hasezawa S., Syono K. Cultivation of rice protoplasts and their transformation mediated by Agrobacterium spheroplasts. Plant Cell Physiol. 1986, 27:463-471.
Thuan N.T.N., Bigirimana J., Roumen E., Van der Straeten D., Höfte M. Molecular and pathotype analysis of the rice blast fungus in North Vietnam. Eur. J. Plant Pathol. 2006, 114:381-396.
Taheri P., Gnanamanickam S., Höfte M. Characterization of Rhizoctonia spp. associated with rice sheath diseases. Phytopathology 2007, 97:373-383.
Coutte F., Lecouturier D., Leclère V., Béchet M., Jacques P., Dhulster P. New integrated bioprocess for the continuous production, extraction and purification of lipopeptides produced by Bacillus subtilis in membrane bioreactor. Process Biochem. 2013, 48(1):25-32.
Farace G., Fernandez O., Jacques L., Coutte F., Krier F., Jacques P., et al. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol. Plant Pathol. 2015, 16(2):177-187.
Kurusu T., Hamada J., Nokajima H., Kitagawa Y., Kiyoduka M., Takahashi A., et al. Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by calcineurin B-like protein-interacting protein kinases, OsCIPK14/15, in rice cultured cells. Plant Physiol. 2010, 153:678-692.
McElroy D., Rothenberg M., Reece K.S., Wu R. Characterization of the rice (Oryza sativa ) actin gene family. Plant Mol. Biol. 1990, 15:257-268.
Kidou S., Ejiri S. Isolation, characterization and mRNA expression of four cDNAs encoding translation elongation factor 1A from rice (Oryza sativa L.). Plant Mol. Biol. 1998, 36(1):137-148.
Mundy J., Chua N.H. Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J. 1988, 7(8):2279-2286.
De Vleesschauwer D., Yang Y., Cruz C.V., Höfte M. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol. 2010, 152(4):2036-2052.
Zarembinski T., Theologis A. Expression characteristics of OS-ACS1 and OS-ACS2, two members of the 1-aminocyclopropane-1-carboxylate synthase gene family in rice (Oryza sativa L. cv. Habiganj Aman II) during partial submergence. Plant Mol. Biol. 1997, 33(1):71-77.
Yang G., Inoue A., Takasaki H., Kaku H., Akao S., Komatsu S. Aproteomic approach to analyze auxin- and zinc-responsive protein in rice. J.Proteome Res. 2005, 4(2):456-463.
Contreras I., Ortiz-Zapater E., Aniento F. Sorting signals in the cytosolic tail of membrane proteins involved in the interaction with plant ARF1 and coatomer. Plant J. 2004, 38(4):685-698.
Ding X., Cao Y., Huang L., Zhao J., Xu C., Li X., et al. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 2008, 20(1):228-240.
Lee M.W., Qi M., Yang Y. Anovel jasmonic acid-inducible rice myb gene associates with fungal infection and host cell death. Mol. Plant Microbe Interact. 2001, 14(4):527-535.
Jwa N.-S., Agrawi G.K., Rakwal R., Park C.-H., Agrawai V.P. Molecular cloning and characterization of a novel jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10, from rice (Oryza sativa, L.) seedling leaves. Biochem. Biophys. Res. Commun. 2001, 286(5):973-983.
Han C.U., Lee C.H., Jang K.S., Choi G.J., Lim H.K., Kim J.-C., et al. Identification of rice genes induced in a rice blast-resistant mutant. Mol. Cells 2004, 17(3):462-468.
Chern M., Fitzegerald H.A., Yadav R.C., Canlas P.E., Dong X., Ronald P.C. Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J. 2001, 27(2):101-113.
Shimono M., Sugano S., Nakayama A., Jiang C.-J., Ono K., Toki S., et al. Rice WRKY45 plays a crucial role in bezothiadiazole-inducible blast resistance. Plant Cell 2007, 19(6):2064-2076.
Zhu H., Xu X., Xiao G., Yuan L., Li B. Enhancing disease resistance of super hybrid rice with four antifungal genes. Sci. China Ser. C: Life Sci. 2007, 50(1):31-39.
Kim M.C., Lee S.H., Kim J.K., Chun H.J., Choi M.S., Chung W.S., et al. Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue. J.Biol. Chem. 2002, 277(22):19304-19314.
Zhu Q., Dabi T., Beeche A., Yamamoto R., Lawton M.A., Lamb C. Cloning and properties of a rice gene encoding phenylalanine ammonia-lyase. Plant Mol. Biol. 1995, 29:535-550.
Takaiwa F., Oono K., Sugiura M. Nucleotide sequence of the 17S-25S spacer region from rice rDNA. Plant Mol. Biol. 1985, 4:355-364.
Pieterse C.M.J., Van der Does D., Zamioudis C., Leon-Reyes A., Van Wees S.C.M. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 2012, 28:489-521.
De Vleesschauwer D., Gheysen G., Höfte M. Hormone defense networking in rice: tales from a different world. Trends Plant Sci. 2013, 18(10):555-565.
De Vleesschauwer D., Xu J., Höfte M. Making sense of hormone-mediated defense networking: from rice to Arabidopsis. Front. Plant Sci. 2014, 5(611):1-15.
Peng X., Hu Y., Tang X., Zhou P., Deng X., Wang H., et al. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 2012, 236:1485-1498.
Helliwell E.E., Wang Q., Yang Y. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol. J. 2013, 11:33-42.
Van Bockhaven J., De Vleesschauwer D., Höfte M. Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J.Exp. Bot. 2013, 64(5):1281-1293.
Shlezinger N., Minz A., Gur Y., Hatam I., Dagdas Y.F., Talbot N.J., Sharon A. Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection. PLoS Pathog. 2011, 7:e1002185.
Asselbergh B., Curvers K., Franca S.C., Audenaert K., Vuylsteke M., Van Breuseghem F., et al. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 2007, 144:1863-1877.
Koga H., Dohi K., Mori M. Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol. Mol. Plant Pathol. 2004, 65:3-9.
Domingo C., Andrés F., Tharreau D., Iglesias D.J., Talón M. Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Mol. Plant-Microbe Interact. 2009, 22:201-210.
Jiang C.J., Shimono M., Sugano S., Kojima M., Yazawa K., Yoshida R., et al. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol. Plant-Microbe Interact. 2010, 23:791-798.
Fu J., Liu H., Li Y., Yu H., Li X., Xiao J., Wang S. Manipulating broad-spectrum disease resistance by suppressing pathogen induced auxin accumulation in rice. Plant Physiol. 2011, 155:589-602.
Yazawa K., Jiang C.J., Kojima M., Sakakibara H., Takatsuji H. Reduction of abscisic acid levels or inhibition of abscisic acid signaling in rice during the early phase of Magnaporthe oryzae infection decreases its susceptibility to the fungus. Physiol. Mol. Plant Pathol. 2012, 78:1-7.
Ongena M., Jacques P., Touré Y., Destain J., Jabrane A., Thonart P. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Microbiol. Biotechnol. 2005, 69(1):29-38.
García-Gutiérrez L., Zeriouh H., Romero D., Cubero J., de Vincente A., Pérez García A. The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microb. Biotechnol. 2013, 6:264-274.
Desoignies N., Schramme F., Ongena M., Legrève A. Systemic resistance induced by Bacillus lipopeptides in Beta vulgaris reduces infection by the rhizomania disease vector Polymyca betae. Mol. Plant Pathol. 2013, 14(4):416-421.
Tran H., Ficke A., Asiimwe T., Höfte M., Raaijmakers J.M. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New. Phytol. 2007, 175(4):731-742.
Falardeau J., Wise C., Novitsky L., Avis T.J. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J.Chem. Ecol. 2013, 39:869-878.
Jourdan E., Henry G., Duby F., Dommes J., Barthelemy J.P., Thonar P., et al. Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol. Plant-Microbe Interact. 2009, 22(4):456-468.
Henry G., Deleu M., Jourdan E., Thonart P., Ongena M. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell. Microbiol. 2011, 13(11):1824-1837.
Ortmann I., Conrath U., Moerschbacher B.M. Exopolysaccharides of Pantoea agglomerans have different priming and eliciting activities in suspension-cultured cells of monocots and dicots. FEBS Lett. 2006, 580(18):4491-4494.
Lacombe S., Rougon-Cardoso A., Sherwood E., Peeters N., Dahlbeck D., van Esse H.P., et al. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat. Biotechnol. 2010, 28:365-369.
Fradin E.F., Abd-El-Haliem A., Masini L., van den Berg G.C.M., Joosten M.H.A.J., Thomma B.P.H.J. Interfamily transfer of tomato ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol. 2011, 156:2255-2265. 10.1104/pp.111.18006721617027.
Tripathi J.N., Lorenzen J., Bahar O., Ronald P., Tripathi L. Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum. Plant Biotechnol. J. 2014, 12(6):663-673.
Afroz A., Chaudhry Z., Rashid U., Ali G.M., Nazir F., Iqbal J., Khan M.R. Enhanced resistance against bacterial wilt in transgenic tomato (Lycopersicon esculentum) lines expressing the Xa21 gene. Plant Cell Tissue Organ Cult. 2011, 104:227-237.
Mendes B.M.J., Cardoso S.C., Boscariol-Camargo R.L., Cruz R.B., Mourãao F.A.A., Filho M., Filho A.B., et al. Reduction in susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis expressing the rice Xa21 gene. Plant Pathol. 2010, 59:68-75.
Holton N., Nekrasov V., Ronald P.C., Zipfel C. The phylogenetically related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots. PLoS Pathog. 2015, 11:e1004602.