Crotalaria; biodiversity conservation; indigeous organism; seed germination; root length; in vitro experimentation; copper; soil chemicophysical prperties; D. R. Congo
Abstract :
[en] Description of the subject. Microevolutionary processes in metallophytes established on copper enriched soils can lead to a diversity of plant species showing distinct tolerance capacities among genus. Researches about the relationship between these endangered plants and soil copper concentrations are critical in order to improve ex situ conservation methods in southeastern Democratic Republic of Congo (Katangan Copperbelt). Objectives. The aim of the study was to test the effect of copper on the germination and root elongation of three Crotalariaspecies naturally occurring along a natural copper gradient. The hypothesis is that copper concentrations have different effects on germination and root elongation according to the species of Crotalaria genus.Method. Three species were selected: Crotalaria cobalticola, Crotalaria peschiana and Crotalariacornetii, occurring on soils with the highest to the lowest copper concentrations respectively. Germination and root elongation tests were performed in vitro (MS vitamin-enriched medium) in six copper mediums ranging from 0 to 125 μM Cu2+. Results. No significant differences in germination percentage were observed according to the copper concentrations. Crotalaria cornetii had the lowest germination percentage. Root elongation of C. peschiana did not differ with copper concentration, but root elongation of C. cobalticola was higher at the greatest copper concentration (125 μM Cu2+). Conclusions. Even if C. cobalticola presented better growth at highest Cu concentrations, it appeared that C. cobalticola and C. peschiana do not require copper for their early stages of development and could thus be conserved in non-contaminated substrate. Crotalariacornetii seemed to present a physical seed dormancy.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Boisson, Sylvain ; Université de Liège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Le Stradic, Soizig ; Université de Liège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Commans, Morgane
Dumont, Amandine
Leclerc, Natasha
Thomas, Cynthia ; Université de Liège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Mahy, Grégory ; Université de Liège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Language :
English
Title :
Copper tolerance of three Crotalaria species from southeastern D.R. Congo at the early development stage
Publication date :
2016
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Volume :
20
Issue :
2
Pages :
151-160
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Antonovics J., Bradshaw A.D. & Turner R.G., 1971. Heavy metal tolerance in plants. Adv. Ecol. Res., 7, 1-85.
Araújo A.S.F. & Monteiro R.T.R., 2005. Plant bioassays to assess toxicity of textile sludge compost. Sci. Agric., 62(3), 286-290.
Austin M., 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol. Modell., 200(1-2), 1-19.
Baker A.J.M. et al., 2010. Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. In: Batty L. & Hallberg K., eds. Ecology of industrial pollution. Cambridge, UK: Cambridge University Press, 7-40.
Bewley J.D. & Black M., 1994. Seeds: physiology of development and germination. New York, USA: Plenum Press.
Boisson S. et al., 2016. No copper required for germination of an endangered endemic species from the Katangan Copperbelt (Katanga, DR Congo): Diplolophium marthozianum. Trop. Ecol., in press.
Bradshaw A.D., 1984. Adaptation of plants to soils containing toxic metals - a test for conceit. In: Evered D. & Collins G.M., eds. Origins and development of adaptation. London: Pitman, 4-19.
Brady K.U., Kruckeberg A.R. & Bradshaw Jr. H.D., 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annu. Rev. Ecol. Evol. Syst., 36(1), 243-266.
Brooks A., Collins J.C. & Thurman D.A., 1981. The mechanism of zinc tolerance in grasses. J. Plant Nutr., 3(1-4), 695-705.
Brooks R.R. & Malaisse F., 1985. The heavy metal tolerant flora of Southcentral Africa: a multidisciplinary approach. Rotterdam, The Netherlands: A.A. Balkema.
Cailteux J.L.H. et al., 2005. Genesis of sediment-hosted stratiform copper–cobalt deposits, central African copperbelt. J. Afr. Earth Sci., 42(1-5), 134-158.
Chipeng F.K. et al., 2010. Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P.A. Duvign. & Plancke. Plant Soil, 328(1-2), 235-244.
Cox R.M. & Hutchinson T.C., 1981. Multiple and co-tolerance to metals in the grass Deschampsia cespitosa: adaptation, preadaptation and cost. J. Plant Nutr., 3, 731-741.
Di Salvatore M., Carafa A. & Carratù G., 2008. Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates. Chemosphere, 73(9), 1461-1464.
Duvigneaud P. & Timperman J., 1959. Études sur la végétation du Katanga et de ses sols métallifères. Communication n° 3. Études sur le genre Crotalaria. Bull. Soc. R. Bot. Belg., 91(2), 135-176.
Duvigneaud P. & Denaeyer-De Smet S., 1963. Études sur la végétation du Katanga et de ses sols métallifères. Communication n° 7. Cuivre et végétation au Katanga. Bull. Soc. R. Bot. Belg., 96(2), 93-231.
Ellis R.H. & Roberts E.H., 1981. The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol., 9, 373-409.
Ernst W.H.O., 1974. Schwermetallvegetation der Erde. Stuttgart, Deutschland: G. Fisher ed.
Faucon M.-P. et al., 2010. Copper endemism in the Congolese flora: a database of copper affinity and conservational value of cuprophytes. Plant Ecol. Evol., 143(1), 5-18.
Faucon M.-P. et al., 2011. May rare metallophytes benefit from disturbed soils following mining activity? The case of the Crepidorhopalon tenuis in Katanga (D. R. Congo). Restor. Ecol., 19(3), 333-343.
Faucon M.-P. et al., 2012. Copper tolerance and accumulation in two cuprophytes of South Central Africa: Crepidorhopalon perennis and C. tenuis (Linderniaceae). Environ. Exp. Bot., 84, 11-16.
Fones H. et al., 2010. Metal hyperaccumulation armors plants against disease. PLoS Pathog., 6(9), 1-13.
François A., 1988. Synthèse géologique sur l’Arc cuprifère du Shaba (Rép. du Zaïre). Soc. Belg. Géol., HS, 15-65.
Gankin R. & Major J., 1964. Arctostaphylos myrtifolia, its biology and relationship to the problem of endemism. Ecology, 45(4), 792-808.
Garnier E., 1992. Growth analysis of congeneric annual and perennial grass species. J. Ecol., 80(4), 665-675.
Godefroid S. et al., 2013. Germination capacity and seed storage behaviour of threatened metallophytes from the Katanga copper belt (DR Congo): implications for ex situ conservation. Plant Ecol. Evol., 146(2), 183-192.
Harrison S.P. & Rajakaruna N., 2011. Serpentine: the evolution and ecology of a model system. Berkeley, CA, USA: University of California Press.
Ilunga wa Ilunga E. et al., 2013. Small-scale diversity of plant communities and distribution of species niches on a copper rock outcrop in Upper Katanga, DR Congo. Plant Ecol. Evol., 146(2), 173-182.
Jeliazkova E.A., Jeliazkov V.D., Craker L.E. & Xing B., 1998. Heavy metals and seed germination in medicinal and aromatic plants. HortScience, 33(2), 206.
Kruckeberg A.R., 1985. California serpentines: flora, vegetation, geology, soils, and management problems. Berkeley, CA, USA: University of California Press.
Lange B. et al., 2014. Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils. Plant Soil, 379(1-2), 275-287.
Le Roux M.M., Van Wyk B.E., Boatwright J.S. & Tilney P.M., 2011. The systematic significance of morphological and anatomical variation in fruits of Crotalaria and related genera of tribe Crotalarieae (Fabaceae). Bot. J. Linn. Soc., 165(1), 84-106.
Leteinturier B., 2002. Évaluation du potentiel phytocénotique des gisements cuprifères d’Afrique centro-australe en vue de la phytoremédiation de sites pollués par l’activité. Gembloux, Belgique: Faculté universitaire des Sciences agronomiques de Gembloux.
Leteinturier B. & Malaisse F., 2002. On the tracks of botanical collectors on copper outcrops of South Central Africa (in French). Syst. Geogr. Plants, 71, 133-163.
Lin Y., 2011. Effects of copper ion on seeds germination of Cichorium intybus L. determined by agar plate method. J. Hebei Agric. Sci., 10.
Malaisse F., 1983. Phytogeography of the copper and cobalt flora of Upper Shaba (Zaïre), with emphasis on its endemism, origin and evolution mechanisms. Bothalia, 14, 497-504.
Malaisse F., Brooks R.R. & North P., 1982. Colonisation of modified metalliferous environments in Zaire by the copper flower Haumaniastrum katangense. Plant Soil, 64, 289-293.
Mayer A.M. & Poljakoff-Mayber A., 1989. The germination of seeds. New York, USA: Pergamon Press.
McLean J. & Bledsoe B.E., 1992. EPA Ground water issue. Behavior of metals in soils. Washington: NSCEP.
McNeilly T. & Bradshaw A.D., 1968. Evolutionary processes in populations of copper tolerant Agrostis tenuis Sibth. Evolution, 22(1), 108-118.
Meyer S., 1986. The ecology of gypsophile endemism in the eastern Mojave Desert. Ecology, 67(5), 1303-1313.
Palacio S. et al., 2007. Plants living on gypsum: beyond the specialist model. Ann. Bot., 99(2), 333-343.
Paton A. & Brooks R.R., 1996. A re-evaluation of Haumaniastrum species as geobotanical indicators of copper and cobalt. J. Geochem. Explor., 56, 37-45.
R Development Core Team, 2010. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing ed.
Rajakaruna N., 2004. The edaphic factor in the origin of species. Int. Geol. Rev., 46, 471-478.
Reichman S., 2002. The responses of plants to metal toxicity: a review focusing on copper, manganese & zinc. Prahan, Victoria, Australia: Australian Minerals & Energy Environment Foundation.
Saad L. et al., 2012. Investigating the vegetation-soil relationships on the copper-cobalt rock outcrops of Katanga (D. R. Congo), an essential step in a biodiversity conservation plan. Restor. Ecol., 20(3), 405-415.
Séleck M. et al., 2013. Chemical soil factors influencing plant assemblages along copper-cobalt gradients: implications for conservation and restoration. Plant Soil, 373(1/2), 455-469.
Soberón J. & Nakamura M., 2009. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl. Acad. Sci. U.S.A., 106(2), 19644-19650.
Tadros T.T.M., 1957. Evidence of the presence of an edapho-biotic factor in the problem of serpentine tolerance. Ecology, 38(1), 14-23.
Veldman J.W. et al., 2015. Tyranny of trees in grassy biomes. Science, 347(6221), 484-485.
Whiting S.N. et al., 2004. Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor. Ecol., 12(1), 106-116.