[en] Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold – a substrate commonly used in nanotechnology – and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct adsorption behavior of the deoxyribonucleotides (i.e., a nitrogenous base, a deoxyribose sugar, and a phosphate group) and on the factors that govern the DNA–gold bond strength. Here, using single molecule force spectroscopy, we investigated the interaction of the four individual nucleotides, adenine, guanine, cytosine, and thymine, with gold. Experiments were performed in three salinity conditions and two surface dwell times to reveal the factors that influence nucleotide–Au bond strength. Force data show that, at physiological ionic strength, adenine–Au interactions are stronger, asymmetrical and independent of surface dwell time as compared to cytosine–Au and guanine–Au interactions. We suggest that in these conditions only adenine is able to chemisorb on gold. A decrease of the ionic strength significantly increases the bond strength for all nucleotides. We show that moderate ionic strength along with longer surface dwell period suggest weak chemisorption also for cytosine and guanine.
Disciplines :
Chemistry
Author, co-author :
Bano, Fouzia; Université de Liège
Sluysmans, Damien ; Université de Liège > Département de chimie (sciences) > Nanochimie et systèmes moléculaires
Wislez, Arnaud ; Université de Liège > Département de chimie (sciences) > Nanochimie et systèmes moléculaires
Duwez, Anne-Sophie ; Université de Liège > Département de chimie (sciences) > Nanochimie et systèmes moléculaires
Language :
English
Title :
Unraveling the complexity of the interactions of DNA nucleotides with gold by single molecule force spectroscopy
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
A. P. de Silva S. S. K. de Silva N. C. W. Goonesekera H. Q. N. Gunaratne P. L. M. Lynch K. R. Nesbitt S. T. Patuwathavithana N. L. D. S. Ramyalal J. Am. Chem. Soc. 2007 129 3050 3051
M. V. Vincenzo Balzani and A. Credi, Molecular Devices and Machines: A Journey into the Nanoworld, Wiley-VCH, 2006
I. Willner B. Shlyahovsky M. Zayats B. Willner Chem. Soc. Rev. 2008 37 1153 1165
S. K. Arya P. R. Solanki M. Datta B. D. Malhotra Biosens. Bioelectron. 2009 24 2810 2817
A. B. Steel R. L. Levicky T. M. Herne M. J. Tarlov Biophys. J. 2000 79 975 981
F. Bano L. Fruk B. Sanavio M. Glettenberg L. Casalis C. M. Niemeyer G. Scoles Nano Lett. 2009 9 2614 2618
E. Mirmomtaz M. Castronovo C. Grunwald F. Bano D. Scaini A. A. Ensafi G. Scoles L. Casalis Nano Lett. 2008 8 4134 4139
L. M. Demers M. Östblom H. Zhang N.-H. Jang B. Liedberg C. A. Mirkin J. Am. Chem. Soc. 2002 124 11248 11249
H. Li L. J. Rothberg J. Am. Chem. Soc. 2004 126 10958 10961
M. Erdmann R. David A. R. Fornof H. E. Gaub Nat. Chem. 2010 2 745 749
U. Rant K. Arinaga S. Fujita N. Yokoyama G. Abstreiter M. Tornow Org. Biomol. Chem. 2006 4 3448 3455
F. W. Bartels B. Baumgarth D. Anselmetti R. Ros A. Becker J. Struct. Biol. 2003 143 145 152
A. S. Duwez S. Cuenot C. Jerome S. Gabriel R. Jerome S. Rapino F. Zerbetto Nat. Nanotechnol. 2006 1 122 125
R. Eckel S. D. Wilking A. Becker N. Sewald R. Ros D. Anselmetti Angew. Chem., Int. Ed. 2005 44 3921 3924
Z. N. Scholl M. Rabbi D. Lee L. Manson H. S-Gracz P. E. Marszalek Phys. Rev. Lett. 2013 111 188302 188305
W. Lu L. Wang J. Li Y. Zhao Z. Zhou J. Shi X. Zuo D. Pan Sci. Rep. 2015 5 10158 10167
S. Piana A. Bilic J. Phys. Chem. B 2006 110 23467 23471
M. Erdmann R. David A. Fornof H. E. Gaub Nat. Nanotechnol. 2010 5 154 159
N. H. Jang Bull. Korean Chem. Soc. 2002 23 1790 1800
A. Bilić J. R. Reimers N. S. Hush J. Hafner J. Chem. Phys. 2002 116 8981 8987
A. Janshoff M. Neitzert Y. Oberdorfer H. Fuchs Angew. Chem., Int. Ed. 2000 39 3212 3237
D. Y. Petrovykh H. Kimura-Suda L. J. Whitman M. J. Tarlov J. Am. Chem. Soc. 2003 125 5219 5226
T. Puntheeranurak I. Neundlinger R. K. Kinne P. Hinterdorfer Nat. Protocols 2011 6 1443 1452
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.