Fauci, A. S., and Marston, H. D. (2014) The perpetual challenge of antimicrobial resistance. JAMA 311, 1853-1854
Payne, D. J. (2008) Desperately seeking new antibiotics. Science 321, 1644-1645
Matsumoto, K., Kusaka, J., Nishibori, A., and Hara, H. (2006) Lipid domains in bacterial membranes. Mol. Microbiol. 61, 1110-1117
Saxena, R., Fingland, N., Patil, D., Sharma, A. K., and Crooke, E. (2013) Crosstalk between DnaA protein, the initiator of Escherichia coli chromosomal replication, and acidic phospholipids present in bacterial membranes. Int. J. Mol. Sci. 14, 8517-8537
Goehring, N. W., and Beckwith, J. (2005) Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr. Biol. 15, R514-R526
Sadeghi, S., Müller, M., and Vink, R. L. (2014) Raft formation in lipid bilayers coupled to curvature. Biophys J. 107, 1591-1600
Gessmann, D., Chung, Y. H., Danoff, E. J., Plummer, A. M., Sandlin, C. W., Zaccai, N. R., and Fleming, K. G. (2014) Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc. Natl. Acad. Sci. U.S.A. 111, 5878-5883
Kaneko, H., Takami, H., Inoue, A., and Horikoshi, K. (2000) Effects of hydrostatic pressure and temperature on growth and lipid composition of the inner membrane of barotolerant Pseudomonas sp. BT1 isolated from the deep-sea. Biosci. Biotechnol. Biochem. 64, 72-79
Broniatowski, M., Mastalerz, P., and Flasiński, M. (2015) Studies of the interactions of ursane-type bioactive terpenes with the model of Escherichia coli inner membrane-Langmuir monolayer approach. Biochim. Biophys. Acta 1848, 469-476
Dalebroux, Z. D., Matamouros, S., Whittington, D., Bishop, R. E., and Miller, S. I. (2014) PhoPQ regulates acidic glycerophospholipid content of the Salmonella typhimurium outer membrane. Proc. Natl. Acad. Sci. U.S.A. 111, 1963-1968
Dalebroux, Z. D., Edrozo, M. B., Pfuetzner, R. A., Ressl, S., Kulasekara, B. R., Blanc, M. P., and Miller, S. I. (2015) Delivery of cardiolipins to the Salmonella outer membrane is necessary for survival within host tissues and virulence. Cell Host Microbe 17, 441-451
Epand, R. M., and Epand, R. F. (2009) Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim. Biophys. Acta 1788, 289-294
Olofsson, G., and Sparr, E. (2013) Ionization constants pKa of cardiolipin. PLoS One 8, e73040
Schlame, M. (2008) Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J. Lipid Res. 49, 1607-1620
Boeris, P. S., Domenech, C. E., and Lucchesi, G. I. (2007) Modification of phospholipid composition in Pseudomonas putida A ATCC 12633 induced by contact with tetradecyltrimethylammonium. J. Appl. Microbiol. 103, 1048-1054
Dowhan, W. (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu. Rev. Biochem. 66, 199-232
Rogasevskaia, T. P., and Coorssen, J. R. (2011) A new approach to the molecular analysis of docking, priming, and regulated membrane fusion. J. Chem. Biol. 4, 117-136
van den Brink-van der Laan, E., Boots, J. W., Spelbrink, R. E., Kool, G. M., Breukink, E., Killian, J. A., and de Kruijff, B. (2003) Membrane interaction of the glycosyltransferase MurG: a special role for cardiolipin. J. Bacteriol. 185, 3773-3779
Fishov, I., and Norris, V. (2012) Membrane heterogeneity created by transertion is a global regulator in bacteria. Curr. Opin. Microbiol. 15, 724-730
Epand, R. M., and Epand, R. F. (2011) Bacterial membrane lipids in the action of antimicrobial agents. J. Pept. Sci. 17, 298-305
Vanounou, S., Parola, A. H., and Fishov, I. (2003) Phosphatidylethanolamine and phosphatidylglycerol are segregated into different domains in bacterial membrane: a study with pyrene-labelled phospholipids. Mol. Microbiol. 49, 1067-1079
Oliver, P. M., Crooks, J. A., Leidl, M., Yoon, E. J., Saghatelian, A., and Weibel, D. B. (2014) Localization of anionic phospholipids in Escherichia coli cells. J. Bacteriol. 196, 3386-3398
Salay, L. C., Ferreira, M., Oliveira ON Jr., Nakaie, C. R., and Schreier, S. (2012) Headgroup specificity for the interaction of the antimicrobial peptide tritrpticin with phospholipid Langmuir monolayers. Colloids Surf. B Biointerfaces 100, 95-102
Baussanne, I., Bussière, A., Halder, S., Ganem-Elbaz, C., Ouberai, M., Riou, M., Paris, J. M., Ennifar, E., Mingeot-Leclercq, M. P., and Décout, J. L. (2010) Synthesis and antimicrobial evaluation of amphiphilic neamine derivatives. J. Med. Chem. 53, 119-127
Ouberai, M., El Garch, F., Bussiere, A., Riou, M., Alsteens, D., Lins, L., Baussanne, I., Dufrêne, Y. F., Brasseur, R., Decout, J. L., and Mingeot-Leclercq, M. P. (2011) The Pseudomonas aeruginosa membranes: a target for a new amphiphilic aminoglycoside derivative? Biochim. Biophys. Acta 1808, 1716-1727
Zimmermann, L., Bussière, A., Ouberai, M., Baussanne, I., Jolivalt, C., Mingeot-Leclercq, M. P., and Décout, J. L. (2013) Tuning the antibacterial activity of amphiphilic neamine derivatives, comparison to paromamine homologues. J. Med. Chem. 56, 7691-7705
Sautrey, G., Zimmermann, L., Deleu, M., Delbar, A., Souza Machado, L., Jeannot, K., Van Bambeke, F., Buyck, J. M., Decout, J. L., and Mingeot-Leclercq, M. P. (2014) New amphiphilic neamine derivatives active against resistant Pseudomonas aeruginosa and their interactions with lipopolysaccharides. Antimicrob. Agents Chemother. 58, 4420-4430
Lopes, S. C., Neves, C. S., Eaton, P., and Gameiro, P. (2012) Improved model systems for bacterial membranes from differing species: the importance of varying composition in PE/PG/cardiolipin ternary mixtures. Mol. Membr. Biol. 29, 207-217
Cheng, J. T., Hale, J. D., Elliott, M., Hancock, R. E., and Straus, S. K. (2011) The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. Biochim. Biophys. Acta 1808, 622-633
Murzyn, K., Róg, T., and Pasenkiewicz-Gierula, M. (2005) Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. Biophys. J. 88, 1091-1103
Epand, R. M., Rotem, S., Mor, A., Berno, B., and Epand, R. F. (2008) Bacterial membranes as predictors of antimicrobial potency. J. Am. Chem. Soc. 130, 14346-14352
Van Bambeke, F., Mingeot-Leclercq, M. P., Schanck, A., Brasseur, R., and Tulkens, P. M. (1993) Alterations in membrane permeability induced by aminoglycoside antibiotics: studies on liposomes and cultured cells. Eur. J. Pharmacol. 247, 155-168
Lelkes, P. I. (1984) Liposome Technology, pp. 225-246, CRC Press, Inc., Boca Raton, FL
Bartlett, G. R. (1959) Phosphorus assay in column chromatography. J. Biol. Chem. 234, 466-468
Angelova, M. I., Soléau, S., Méléard, P., Faucon, J. F., and Bothorel, P. (1992) Preparation of giant vesicles by external AC electric fields: kinetics and applications. InTrends in Colloid and Interface Science VI (Helm, C., Lösche, M., and Möhvald, H., eds) pp. 127-131, Steinkopff, Dresden, Germany
Loh, B., Grant, C., and Hancock, R. E. (1984) Use of the fluorescent probe 1-N-Phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 26, 546-551
Wu, M., and Hancock, R. E. (1999) Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. J. Biol. Chem. 274, 29-35
Di Pasquale, E., Salmi-Smail, C., Brunel, J. M., Sanchez, P., Fantini, J., and Maresca, M. (2010) Biophysical studies of the interaction of squalamine and other cationic amphiphilic molecules with bacterial and eukaryotic membranes: importance of the distribution coefficient in membrane selectivity. Chem. Phys. Lipids 163, 131-140
Krasne, S. (1980) Interactions of voltage-sensing dyes with membranes. II. Spectrophotometric and electrical correlates of cyanine-dye adsorption to membranes. Biophys. J. 30, 441-462
Smith, J. C. (1990) Potential-sensitive molecular probes in membranes of bioenergetic relevance. Biochim. Biophys. Acta 1016, 1-28
Weinstein, J. N., Yoshikami, S., Henkart, P., Blumenthal, R., and Hagins, W. A. (1977) Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science 195, 489-492
Tiriveedhi, V., and Butko, P. (2007) A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes. Biochemistry 46, 3888-3895
Lobasso, S., Saponetti, M. S., Polidoro, F., Lopalco, P., Urbanija, J., Kralj-Iglic, V., and Corcelli, A. (2009) Archaebacterial lipid membranes as models to study the interaction of 10-N-nonyl acridine orange with phospholipids. Chem. Phys. Lipids 157, 12-20
Mileykovskaya, E., Ryan, A. C., Mo, X., Lin, C. C., Khalaf, K. I., Dowhan, W., and Garrett, T. A. (2009) Phosphatidic acid and N-acylphosphatidylethanolamine form membrane domains in Escherichia coli mutant lacking cardiolipin and phosphatidylglycerol. J. Biol. Chem. 284, 2990-3000
Alam, J. M., Kobayashi, T., and Yamazaki, M. (2012) The single-giant unilamellar vesicle method reveals lysenin-induced pore formation in lipid membranes containing sphingomyelin. Biochemistry 51, 5160-5172
Hoekstra, D., de Boer, T., Klappe, K., and Wilschut, J. (1984) Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23, 5675-5681
Düzgüneş, N., Faneca, H., and Lima, M. C. (2010) Methods to monitor liposome fusion, permeability, and interaction with cells. Methods Mol. Biol. 606, 209-232
Niven, G. W., and Mulholland, F. (1998) Cell membrane integrity and lysis in Lactococcus lactis: the detection of a population of permeable cells in post-logarithmic phase cultures. J. Appl. Microbiol. 84, 90-96
Apellániz, B., Nieva, J. L., Schwille, P., and García-Sáez, A. J. (2010) All-ornone versus graded: single-vesicle analysis reveals lipid composition effects on membrane permeabilization. Biophys J. 99, 3619-3628
Wesołowska, O., Michalak, K., Maniewska, J., and Hendrich, A. B. (2009) Giant unilamellar vesicles: a perfect tool to visualize phase separation and lipid rafts in model systems. Acta Biochim. Pol. 56, 33-39
Wadhwani, P., Epand, R. F., Heidenreich, N., Bürck, J., Ulrich, A. S., and Epand, R. M. (2012) Membrane-active peptides and the clustering of anionic lipids. Biophys. J. 103, 265-274
Meers, P., Ali, S., Erukulla, R., and Janoff, A. S. (2000) Novel inner monolayer fusion assays reveal differential monolayer mixing associated with cation-dependent membrane fusion. Biochim. Biophys. Acta 1467, 227-243
Demel, R. A., Geurts van Kessel, W. S., Zwaal, R. F., Roelofsen, B., and van Deenen, L. L. (1975) Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers. Biochim. Biophys. Acta 406, 97-107
Marsh, D. (1996) Lateral pressure in membranes. Biochim. Biophys. Acta 1286, 183-223
Ghorbal, S. K., Chatti, A., Sethom, M. M., Maalej, L., Mihoub, M., Kefacha, S., Feki, M., Landoulsi, A., and Hassen, A. (2013) Changes in membrane fatty acid composition of Pseudomonas aeruginosa in response to UV-C radiations. Curr. Microbiol. 67, 112-117
Bernal, P., Segura, A., and Ramos, J. L. (2007) Compensatory role of the cis-trans-isomerase and cardiolipin synthase in the membrane fluidity of Pseudomonas putida DOT-T1E. Environ. Microbiol. 9, 1658-1664
Minkler, P. E., and Hoppel, C. L. (2010) Separation and characterization of cardiolipin molecular species by reverse-phase ion pair high-performance liquid chromatography-mass spectrometry. J. Lipid Res. 51, 856-865
Kozlovsky, Y., Chernomordik, L. V., and Kozlov, M. M. (2002) Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm. Biophys. J. 83, 2634-2651
Epand, R. F., Martinou, J. C., Fornallaz-Mulhauser, M., Hughes, D. W., and Epand, R. M. (2002) The apoptotic protein tBid promotes leakage by altering membrane curvature. J. Biol. Chem. 277, 32632-32639
Beales, P. A., Bergstrom, C. L., Geerts, N., Groves, J. T., and Vanderlick, T. K. (2011) Single vesicle observations of the cardiolipin-cytochrome c interaction: induction of membrane morphology changes. Langmuir 27, 6107-6115
Basañez, G. (2002) Membrane fusion: the process and its energy suppliers. Cell Mol. Life Sci. 59, 1478-1490
Nikolaus, J., Warner, J. M., O'Shaughnessy, B., and Herrmann, A. (2011) The pathway to membrane fusion through hemifusion. Curr. Top. Membr. 68, 1-32
Chernomordik, L. V., and Kozlov, M. M. (2008) Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15, 675-683
Katsov, K., Müller, M., and Schick, M. (2004) Field theoretic study of bilayer membrane fusion. I. Hemifusion mechanism. Biophys. J. 87, 3277-3290
Feigenson, G. W. (1986) On the nature of calcium ion binding between phosphatidylserine lamellae. Biochemistry 25, 5819-5825
Mattai, J., Hauser, H., Demel, R. A., and Shipley, G. G. (1989) Interactions of metal ions with phosphatidylserine bilayer membranes: effect of hydrocarbon chain unsaturation. Biochemistry 28, 2322-2330
Ohki, S. (1982) A mechanism of divalent ion-induced phosphatidylserine membrane fusion. Biochim. Biophys. Acta 689, 1-11
Chanturiya, A., Scaria, P., Woodle, M.C. (2000) The role of membrane lateral tension in calcium-induced membrane fusion. J. Membr. Biol. 176, 67-75
Chernomordik, L. V., Frolov, V. A., Leikina, E., Bronk, P., and Zimmerberg, J. (1998) The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J. Cell Biol. 140, 1369-1382
Siegel, D. P. (1999) The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion. Biophys. J. 76, 291-313
Ortiz, A., Killian, J. A., Verkleij, A. J., and Wilschut, J. (1999) Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations. Biophys. J. 77, 2003-2014
Siegel, D. P., and Epand, R. M. (1997) The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. Biophys J. 73, 3089-3111
Mileykovskaya, E., and Dowhan, W. (2009) Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim. Biophys. Acta 1788, 2084-2091
Renner, L. D., and Weibel, D. B. (2011) Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc. Natl. Acad. Sci. U.S.A. 108, 6264-6269
Wydro, P. (2013) The influence of cardiolipin on phosphatidylglycerol/phosphatidylethanolamine monolayers-studies on ternary films imitating bacterial membranes. Colloids Surf. B Biointerfaces 106, 217-223
Favini-Stabile, S., Contreras-Martel, C., Thielens, N., and Dessen, A. (2013) MreB and MurG as scaffolds for the cytoplasmic steps of peptidoglycan biosynthesis. Environ. Microbiol. 15, 3218-3228
Mohammadi, T., Karczmarek, A., Crouvoisier, M., Bouhss, A., Mengin-Lecreulx, D., and den Blaauwen, T. (2007) The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in Escherichia coli. Mol. Microbiol. 65, 1106-1121
Bramkamp, M., and van Baarle, S. (2009) Division site selection in rodshaped bacteria. Curr. Opin. Microbiol. 12, 683-688
Renner, L. D., and Weibel, D. B. (2012) MinD and MinE interact with anionic phospholipids and regulate division plane formation in Escherichia coli. J. Biol. Chem. 287, 38835-38844
Evans, E. A., and Waugh, R. (1977) Osmotic correction to elastic area compressibility measurements on red cell membrane. Biophys. J. 20, 307-313
Stöckl, M., Fischer, P., Wanker, E., and Herrmann, A. (2008) α-Synuclein selectively binds to anionic phospholipids embedded in liquid-disordered domains. J. Mol. Biol. 375, 1394-1404
Ibarguren, M., López, D. J., Encinar, J. A., González-Ros, J. M., Busquets, X., and Escribá, P. V. (2013) Partitioning of liquid-ordered/liquid-disordered membrane microdomains induced by the fluidifying effect of 2-hydroxylated fatty acid derivatives. Biochim. Biophys. Acta 1828, 2553-2563
Chopra, I. (1988) Molecular mechanisms involved in the transport of antibiotics into bacteria. Parasitology 96, S25-S44