[en] Transport of carbonyl sulfide (OCS) from the troposphere to the stratosphere contributes sulfur to the stratospheric aerosol layer, which reflects incoming short-wave solar radiation, cooling the climate system. Previous analyses of OCS observations have shown no significant trend, suggesting that OCS is unlikely to be a major contributor to the reported increases in stratospheric aerosol loading and indicating a balanced OCS budget. Here we present analyses of ground-based Fourier transform spectrometer measurements of OCS at three Southern Hemisphere sites spanning 34.45°S to 77.80°S. At all three sites statistically significant positive
trends are seen from 2001 to 2014 with an observed overall trend in total column OCS at Wollongong of 0.73 ± 0.03%/yr, at Lauder of 0.43 ± 0.02%/yr, and at Arrival Heights of 0.45 ± 0.05%/yr. These observed trends in OCS imply that the OCS budget is not balanced and could contribute to constraints on current estimates of sources and sinks.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Kremser, Stefanie
Jones, Nicholas B.
Palm, Mathias
Lejeune, Bernard ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Wang, Yuting
Smale, Dan
Deutscher, Nicholas M.
Language :
English
Title :
Positive trends in Southern Hemisphere carbonyl sulfide
Publication date :
06 November 2015
Journal title :
Geophysical Research Letters
ISSN :
0094-8276
eISSN :
1944-8007
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
Volume :
42
Pages :
9473-9480
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Royal Society of New Zealand NIWA ARC - Australian Research Council EU project StratoClim German Research council
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Berry, J., et al., (2013), A coupled model of the global cycles of carbonyl sulfide and CO2: A possible new window on the carbon cycle, J. Geophys. Res. Biogeosci., 118, 842-852, doi: 10.1002/jgrg.20068.
Blake, N. J., et al., (2004), Carbonyl sulfide and carbon disulfide: Large-scale distributions over the western Pacific and emissions from Asia during TRACE-P, J. Geophys. Res., 109, D15S05, doi: 10.1029/2003JD004259.
Bodeker, G. E., and, S. Kremser, (2015), Techniques for analyses of trends in GRUAN data, Atmos. Meas. Tech., 8, 1673-1684, doi: 10.5194/amt-8-1673-2015.
Brühl, C., J. Lelieveld, P. J. Crutzen, and, H. Tost, (2012), The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate, Atmos. Chem. Phys., 12, 1239-1253.
Campbell, J. E., et al., (2008), Photosynthetic control of atmospheric carbonyl sulfide during the growing season, Science, 322, 1085-1088.
Campbell, J. E., M. E. Whelan, U. Seibt, S. J. Smith, J. A. Berry, and, T. W. Hilton, (2015), Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints, Geophys. Res. Lett., 42, 3004-3010, doi: 10.1002/2015GL063445.
Chin, M., and, D. D. Davis, (1995), A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol, J. Geophys. Res., 1000 (D5), 8993-9005, doi: 10.1029/95JD00275.
Coffey, M. T., and, J. W. Hannigan, (2010), The temporal trend of stratospheric carbonyl sulfide, J. Atmos. Chem., 67, 61-70, doi: 10.1007/s10874-011-9203-4.
Crutzen, P. J., (1976), The possible importance of CSO for the sulfate layer of the stratosphere, Geophys. Res. Lett., 3, 73-76, doi: 10.1029/GL003i002p00073.
Efron, B., and, R. Tibshirani, (1986), Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy, Stat. Sci., 1 (1), 54-77.
Griffith, D. W. T., N. B. Jones, and, W. A. Matthews, (1998), Interhemispheric ratio and annual cycle of carbonyl sulfide (OCS) total column from ground-based solar FTIR spectra, J. Geophys. Res., 103 (D7), 8447-8454, doi: 10.1029/97JD03462.
Hase, F., P. Demoulin, A. J. Sauval, G. C. Toon, P. F. Bernath, A. Goldman, J. W. Hannigan, and, C. P. Rinsland, (2006), An empirical line-by-line model for the infrared solar transmittance spectrum from 700 to 5000 cm-1, J. Quant. Spectros. Radiat. Transfer, 102, 450-463.
Hofmann, D. J., and, T. Deshler, (1990), Balloonborne measurements of polar stratospheric clouds and ozone at -93°C in the Arctic in February 1990, Geophys. Res. Lett., 17 (12), 2185-2188, doi: 10.1029/GL017i012p02185.
Hofmann, D., J. Barnes, M. O'Neill, M. Trudeau, and, R. Neely, (2009), Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado, Geophys. Res. Lett., 36, L15808, doi: 10.1029/12009GL039008.
Jones, N. B., K. Riedel, W. Allan, S. Wood, P. I. Palmer, K. Chance, and, J. Notholt, (2009), Long-term tropospheric formaldehyde concentrations deduced from ground-based Fourier transform solar infrared measurements, Atmos. Chem. Phys., 9, 7131-7142.
Kettle, A. J., U. Kuhn, M. von Hobe, J. Kesselmeier, and, M. O. Andreae, (2002), Global budget of atmospheric carbonyl sulfide: Temporal and spatial variations of the dominant sources and sinks, J. Geophys. Res., 107 (D22), 4658, doi: 10.1029/2002JD002187.
Kohlhepp, R., et al., (2012), Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances, Atmos. Chem. Phys., 12, 3527-3556.
Kuai, L., J. Worden, S. S. Kulawik, S. A. Montzka, and, J. Liu, (2014), Characterization of Aura TES carbonyl sulfide retrievals over ocean, Atmos. Meas. Tech., 7, 163-172, doi: 10.5194/amt-7-163-2014.
Marsh, D. R., M. J. Mills, D. E. Kinnison, J.-F. Lamarque, N. Calvo, and, L. M. Polvani, (2013), Climate change from 1850 to 2005 simulated in CESM1(WACCM), J. Clim., 26 (19), 7372-7391.
Montzka, S. A., P. Calvert, B. D. Hall, J. W. Elkins, T. J. Conway, P. P. Tans, and, C. Sweeney, (2007), On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2, J. Geophys. Res., 112, D09302, doi: 10.1029/2006JD007665.
Moore, D. S., and, G. P. McCabe, (2003), Introduction to the Practice of Statistics, W.H. Freeman and Company, New York.
Myhre, G., T. F. Berglen, C. E. L. Myhre, and, I. S. A. Isaksen, (2004), The radiative effect of the anthropogenic influence on the stratospheric sulfate aerosol layer, Tellus, 56 (B), 294-299.
Paton-Walsh, C., N. Jones, S. Wilson, A. Meier, N. Deutscher, D. Griffith, R. Mitchell, and, S. Campbell, (2004), Trace gas emissions from biomass burning inferred from aerosol optical depth, Geophys. Res. Lett., 31, L05116, doi: 10.1029/2003GL018973.
Pitari, G., E. Mancini, V. Rizi, and, D. Shindell, (2002), Impact of future climate change and emission changes on stratospheric aerosols and ozone, J. Atmos. Sci., 59, 414-440.
Randel, W. J., M. Park, L. Emmons, D. Kinnison, P. Bernath, K. A. Walker, C. Boone, and, H. Pumphrey, (2010), Asian monsoon transport of pollution to the stratosphere, Science, 328, 611-613.
Rinsland, C. P., et al., (1998), Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane, J. Geophys. Res., 103 (D21), 28,197-28,217, doi: 10.1029/98JD02515.
Rinsland, C. P., L. Chiou, E. Mahieu, R. Zander, C. D. Boone, and, P. F. Bernath, (2008), Measurements of long-term changes in atmospheric OCS (carbonyl sulfide) from infrared solar observations, J. Quant. Spectros. Radiat. Transfer, 109, 2679-2686.
Rodgers, C. D., (1976), Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation, Rev. Geophys. Space Phys., 14 (4), 609-624.
Rothman, L. S., et al., (2013), The HITRAN2012 molecular spectroscopic database, J. Quant. Spectros. Radiat. Transfer, 130, 4-50.
Sandoval-Soto, L., M. Stanimirov, M. von Hobe, V. Schmitt, J. Valdes, A. Wild, and, J. Kesselmeier, (2005), Global uptake of carbonyl sulfide (COS) by terrestrial vegetation: Estimates corrected by deposition velocities normalized to the uptake of carbon dioxide (CO2), Biogeosciences, 2 (2), 125-132.
Sheng, J.-X., D. K. Weisenstein, B.-P. Luo, E. Rozanov, A. Stenke, J. Anet, H. Bingemer, and, T. Peter, (2015), Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol-chemistry-climate model predictions and validation, J. Geophys. Res. Atmos., 120, 256-276, doi: 10.1002/2014JD021985.
Sturges, W. T., S. A. Penkett, J.-M. Barnola, J. Chappellaz, E. Atlas, and, V. Stroud, (2001), A long-term record of carbonyl sulfide (COS) in two hemispheres from firn air measurements, Geophys. Res. Lett., 28 (21), 4095-4098, doi: 10.1029/2001GL013958.
Suntharalingam, P., A. J. Kettle, S. M. Montzka, and, D. J. Jacob, (2008), Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: Implications for terrestrial vegetation uptake, Geophys. Res. Lett., 35, L19801, doi: 10.1029/2008GL034332.
Vernier, J.-P., et al., (2011), Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade, Geophys. Res. Lett., 38, L12807, doi: 10.1029/2011GL047563.
Watts, S. F., (2000), The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide, Atmos. Environ., 34 (5), 761-779.
Wood, S. W., et al., (2002), Validation of version 5.20 ILAS HNO3,CH4,N2O, O3, and NO2 using ground-based measurements at Arrival Heights and Kiruna, J. Geophys. Res., 107 (D24), 8208, doi: 10.1029/2001JD000581.
Zeng, G., S. W. Wood, O. Morgenstern, N. B. Jones, J. Robinson, and, D. Smale, (2012), Trends and variations in CO, C2H6, and HCN in the Southern Hemisphere point to the declining anthropogenic emissions of CO and C2H6, Atmos. Chem. Phys., 12, 7543-7555, doi: 10.5194/acp-12-7543-2012.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.