[en] BACKGROUND: Critically ill patients often experience high levels of insulin resistance and stress-induced hyperglycemia, which may negatively impact outcomes. However, evidence surrounding the causes of negative outcomes remains inconclusive. Continuous glucose monitoring (CGM) devices allow researchers to investigate glucose complexity, using detrended fluctuation analysis (DFA), to determine whether it is associated with negative outcomes. The aim of this study was to investigate the effects of CGM device type/calibration and CGM sensor location on results from DFA. METHODS: This study uses CGM data from critically ill patients who were each monitored concurrently using Medtronic iPro2s on the thigh and abdomen and a Medtronic Guardian REAL-Time on the abdomen. This allowed interdevice/calibration type and intersensor site variation to be assessed. Detrended fluctuation analysis is a technique that has previously been used to determine the complexity of CGM data in critically ill patients. Two variants of DFA, monofractal and multifractal, were used to assess the complexity of sensor glucose data as well as the precalibration raw sensor current. Monofractal DFA produces a scaling exponent (H), where H is inversely related to complexity. The results of multifractal DFA are presented graphically by the multifractal spectrum. RESULTS: From the 10 patients recruited, 26 CGM devices produced data suitable for analysis. The values of H from abdominal iPro2 data were 0.10 (0.03-0.20) higher than those from Guardian REAL-Time data, indicating consistently lower complexities in iPro2 data. However, repeating the analysis on the raw sensor current showed little or no difference in complexity. Sensor site had little effect on the scaling exponents in this data set. Finally, multifractal DFA revealed no significant associations between the multifractal spectrums and CGM device type/calibration or sensor location. CONCLUSIONS: Monofractal DFA results are dependent on the device/calibration used to obtain CGM data, but sensor location has little impact. Future studies of glucose complexity should consider the findings presented here when designing their investigations.
Capes SE, Hunt D, Malmberg K, Gerstein HC. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet. 2000;355(9206):773-8.
Finney SJ, Zekveld C, Elia A, Evans TW. Glucose control and mortality in critically ill patients. JAMA. 2003;290(15):2041-7.
Krinsley JS. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc. 2003;78(12):1471-8.
McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia. Crit Care Clin. 2001;17(1):107-24.
Mizock BA. Alterations in fuel metabolism in critical illness: hyperglycaemia. Best Pract Res Clin Endocrinol Metab. 2001;15(4):533-51.
Umpierrez GE, Isaacs SD, Bazargan N, You X, Thaler LM, Kitabchi AE. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab. 2002;87(3):978-82.
Van den Berghe G, Wouters PJ, Bouillon R, Weekers F, Verwaest C, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P. Outcome benefit of intensive insulin therapy in the critically ill: Insulin dose versus glycemic control. Crit Care Med. 2003;31(2):359-66.
Bistrian BR. Hyperglycemia and infection: which is the chicken and which is the egg? JPEN J Parenter Enteral Nutr. 2001;25(4):180-1.
Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345(19):1359-67.
Chase JG, Shaw G, Le Compte A, Lonergan T, Willacy M, Wong XW, Lin J, Lotz T, Lee D, Hann C. Implementation and evaluation of the SPRINT protocol for tight glycaemic control in critically ill patients: a clinical practice change. Crit Care. 2008;12(2):R49.
Krinsley JS. Effect of an intensive glucose management protocol on the mortality of critically ill adult patients. Mayo Clin Proc. 2004;79(8):992-1000.
Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Olthof D, Jaschinski U, John S, Rossaint R, Welte T, Schaefer M, Kern P, Kuhnt E, Kiehntopf M, Hartog C, Natanson C, Loefler M, Reinhart K; German Competence Network Sepsis (SepNet). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125-39.
Finfer S, Delaney A. Tight glycemic control in critically ill adults. JAMA. 2008;300(8):963-5.
Preiser JC, Devos P, Ruiz-Santana S, Mélot C, Annane D, Groeneveld J, Iapichino G, Leverve X, Nitenberg G, Singer P, Wernerman J, Joannidis M, Stecher A, Chioléro R. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med. 2009;35(10):1738-48.
Griesdale DE, de Souza RJ, van Dam RM, Heyland DK, Cook DJ, Malhotra A, Dhaliwal R, Henderson WR, Chittock DR, Finfer S, Talmor D. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ. 2009;180(8):821-7.
Egi M, Bellomo R, Stachowski E, French CJ, Hart G. Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology. 2006;105(2):244-52.
Krinsley JS. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008;36(11):3008-13.
Hermanides J, Vriesendorp TM, Bosman RJ, Zandstra DF, Hoekstra JB, Devries JH. Glucose variability is associated with intensive care unit mortality. Crit Care Med. 2010;38(3):838-42.
Pidcoke HF, Wanek SM, Rohleder LS, Holcomb JB, Wolf SE, Wade CE. Glucose variability is associated with high mortality after severe burn. J Trauma. 2009;67(5):990-5.
Kaneki M, Sakai M, Shimizu N, Chang K. Is normalized mean blood glucose level good enough for the intensive care unit? - glycemic variability as a new independent predictor of mortality. Crit Care Med. 2008;36(11):3104-6.
Ali NA, O'Brien JM Jr, Dungan K, Phillips G, Marsh CB, Lemeshow S, Connors AF Jr, Preiser JC. Glucose variability and mortality in patients with sepsis. Crit Care Med. 2008;36(8):2316-21.
Lundelin K, Vigil L, Bua S, Gomez-Mestre I, Honrubia T, Varela M. Diferences in complexity of glycemic profile in survivors and nonsurvivors in an intensive care unit: a pilot study. Crit Care Med. 2010;38(3):849-54.
Brunner R, Adelsmayr G, Herkner H, Madl C, Holzinger U. Glycemic variability and glucose complexity in critically ill patients: a retrospective analysis of continuous glucose monitoring data. Crit Care. 2012;16(5):R175.
Lee JM, Kim DJ, Kim IY, Suk Park K, Kim SI. Nonlinear-analysis of human sleep EEG using detrended fluctuation analysis. Med Eng Phys. 2004;26(9):773-6.
Penzel T, Kantelhardt JW, Grote L, Peter JH, Bunde A. Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans Biomed Eng. 2003;50(10):1143-51.
Peng CK, Mietus JE, Liu Y, Lee C, Hausdorf JM, Stanley HE, Goldberger AL, Lipsitz LA. Quantifying fractal dynamics of human respiration: age and gender efects. Ann Biomed Eng. 2002;30(5):683-92.
Eke A, Herman P, Kocsis L, Kozak LR. Fractal characterization of complexity in temporal physiological signals. Physiol Meas. 2002;23(1):R1-38.
Goldberger AL, Amaral LA, Hausdorf JM, Ivanov PCh, Peng CK, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A. 2002;99 Suppl 1:2466-72.
Hausdorf JM, Purdon PL, Peng CK, Ladin Z, Wei JY, Goldberger AL. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J Appl Physiol (1985). 1996;80(5):1448-57.
Peng CK, Havlin S, Hausdorff JM, Mietus JE, Stanley HE, Goldberger AL. Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. J Electrocardiol. 1995;28 Suppl:59-65.
Evans A, Le Compte A, Tan CS, Ward L, Steel J, Pretty CG, Penning S, Suhaimi F, Shaw GM, Desaive T, Chase JG. Stochastic targeted (STAR) glycemic control: design, safety, and performance. J Diabetes Sci Technol. 2012;6(1):102-15.
Ihlen EA. Introduction to multifractal detrended fluctuation analysis in matlab. Front Physiol. 2012;3:141.
Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE. Multifractal detrended fluctuation analysis of nonstationary time series," Physica A. 2002;316:87-114.
Medtronic Minimed. iPro2 user guide. 2010.
Medtronic Minimed. Guardian REAL-Time continuous glucose monitoring system user guide. 2006.