Jupiter; Electron energy levels; Electrons; Magnetosphere; Aurora; Auroral emission; Auroral oval; Electron energies; Field aligned currents; Jupiters; Low latitudes; Source region; Electron temperature; Lisri
Badman, S. V.; Physics Department, Lancaster University, Lancaster, United Kingdom
Bonfond, Bertrand ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Fujimoto, M.; Institute of Space and Astronautical Science, Sagamihara, Japan
Gray, R. L.; Physics Department, Lancaster University, Lancaster, United Kingdom
Kasaba, Y.; Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan
Kasahara, S.; Institute of Space and Astronautical Science, Sagamihara, Japan
Kimura, T.; RIKEN, Wako, Japan
Melin, H.; Department of Physics, University of Leicester, Leicester, United Kingdom
Nichols, J. D.; Department of Physics, University of Leicester, Leicester, United Kingdom
Steffl, A. J.; Department of Space Studies, Southwest Research Institute, Boulder, CO, United States
Tao, C.; NICT, Tokyo, Japan
Tsuchiya, F.; Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan
Yamazaki, A.; Institute of Space and Astronautical Science, Sagamihara, Japan
Yoneda, M.; Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan, Kiepenheuer Institute for Solar Physics, Freiburg im Breisgau, Germany
Yoshikawa, I.; Department of Complexity Science and Engineering, University of Tokyo, Tokyo, Japan
Yoshioka, K.; Graduate School of Science, University of Tokyo, Tokyo, Japan
Bonfond, B., (2012), When Moons create aurora: The satellite footprints on giant planets, in Auroral Phenomenology and Magnetospheric Processes: Earth And Other Planets, Geophys. Monogr. Ser., vol. 197, edited by, A. Keiling, et al., pp. 133-140, AGU, Washington, D. C.
Bonfond, B., D. Grodent, J.-C. Gérard, A. Radioti, V. Dols, P. A. Delamere, and, J. T. Clarke, (2009), The Io UV footprint: Location, inter-spot distances and tail vertical extent, J. Geophys. Res., 114, doi: 10.1029/2009JA014312.
Bonfond, B., D. Grodent, J.-C. Gérard, T. Stallard, J. T. Clarke, M. Yoneda, A. Radioti, and, J. Gustin, (2012), Auroral evidence of Io's control over the magnetosphere of Jupiter, Geophys. Res. Lett., 39, L01105, doi: 10.1029/2011GL050253.
Clarke, J. T., J. Ajello, G. Ballester, L. Ben Jaffel, J. Connerney, J.-C. Gérard, G. R. Gladstone, D. Grodent, W. Pryor, J. Trauger, and, J. H. Waite, (2002), Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter, Nature, 415, 997-1000.
Clarke, J. T., et al., (2009), Response of Jupiter's and Saturn's auroral activity to the solar wind, J. Geophys. Res., 114, A05210, doi: 10.1029/2008JA013694.
Connerney, J. E. P., R. Baron, T. Satoh, and, T. Owen, (1993), Images of Excited H at the foot of the Io flux tube in Jupiter's atmosphere, Science, 262, 1035-1038, doi: 10.1126/science.262.5136.1035.
Cowley, S. W. H., and, E. J. Bunce, (2001), Origin of the main auroral oval in Jupiter's coupled magnetosphere-ionosphere system, Planet. Space. Sci., 49, 1067-1088, doi: 10.1016/S0032-0633(00)00167-7.
Cowley, S. W. H., J. D. Nichols, and, D. J. Andrews, (2007), Modulation of Jupiter's plasma flow, polar currents, and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: A simple theoretical model, Ann. Geophys., 25, 1433-1463, doi: 10.5194/angeo-25-1433-2007.
Dumont, M., D. Grodent, A. Radioti, and, J.-C. Gérard, (2014), Jupiter's equatorward auroral features: Possible signatures of magnetospheric injections, J. Geophys. Res. Space Physics, 119 (12), 10,068-10,077, doi: 10.1002/2014JA020527.
Gérard, J.-C., B. Bonfond, D. Grodent, A. Radioti, J. T. Clarke, G. R. Gladstone, J. H. Waite, D. Bisikalo, and, V. I. Shematovich, (2014), Mapping the electron energy in Jupiter's aurora: Hubble spectral observations, J. Geophys. Res. Space Physics, 119, 9072-9088, doi: 10.1002/2014JA020514.
Gladstone, G. R., et al., (2002), A pulsating auroral X-ray hot spot on Jupiter, Nature, 415, 1000-1003.
Grodent, D., J. T. Clarke, J. Kim, J. H. Waite, and, S. W. H. Cowley, (2003a), Jupiter's main auroral oval observed with HST-STIS, J. Geophys. Res., 108 (A11), 1389, doi: 10.1029/2003JA009921.
Grodent, D., J. T. Clarke, J. H. Waite, S. W. H. Cowley, J.-C. Gérard, and, J. Kim, (2003b), Jupiter's polar auroral emissions, J. Geophys. Res., 108, 1366, doi: 10.1029/2003JA010017.
Grodent, D., J.-C. Gérard, A. Radioti, B. Bonfond, and, A. Saglam, (2008), Jupiter's changing auroral location, J. Geophys. Res., 113 (A01206), doi: 10.1029/2007JA012601.
Gurnett, D. A., et al., (2002), Control of Jupiter's radio emission and aurorae by the solar wind, Nature, 415, 985-987.
Gustin, J., J.-C. Gérard, D. Grodent, S. W. H. Cowley, J. T. Clarke, and, A. Grard, (2004), Energy-flux relationship in the FUV Jovian aurora deduced from HST-STIS spectral observations, J. Geophys. Res., 109, A10205, doi: 10.1029/2003JA010365.
Gustin, J., B. Bonfond, D. Grodent, and, J.-C. Gérard, (2012), Conversion from HST ACS and STIS auroral counts into brightness, precipitated power, and radiated power for H2 giant planets, J. Geophys. Res., 117, A07316, doi: 10.1029/2012JA017607.
Hill, T. W., (2001), The Jovian auroral oval, J. Geophys. Res., 106, 8101-8108, doi: 10.1029/2000JA000302.
Kimura, T., et al., (2015), Transient internally-driven aurora at Jupiter discovered by Hisaki and the Hubble Space Telescope, Geophys. Res. Lett., 42, 1662-1668, doi: 10.1002/2015GL063272.
Kivelson, M. G., K. K. Khurana, C. T. Russell, and, R. J. Walker, (1997), Intermittent short-duration magnetic field anomalies in the Io torus: Evidence for plasma interchange? Geophys. Res. Lett., 24, 2127-2130, doi: 10.1029/97GL02202.
Lundin, R., and, I. Sandahl, (1978), Some characteristics of the parallel electric field acceleration of electrons over discrete auroral arcs as observed from two rocket flights, ESA SP-135, 125.
Mauk, B. H., D. J. Williams, R. W. McEntire, K. K. Khurana, and, J. G. Roederer, (1999), Storm-like dynamics of Jupiter's inner and middle magnetosphere, J. Geophys. Res., 104, 22,759-22,778, doi: 10.1029/1999JA900097.
Mauk, B. H., J. T. Clarke, D. Grodent, J. H. Waite, C. P. Paranicas, and, D. J. Williams, (2002), Transient aurora on Jupiter from injections of magnetospheric electrons, Nature, 415, 1003-1005.
Nichols, J. D., (2011), Magnetosphere-ionosphere coupling in Jupiter's middle magnetosphere: Computations including a self-consistent current sheet magnetic field model, J. Geophys. Res., 116, A10232, doi: 10.1029/2011JA016922.
Nichols, J. D., and, S. W. H. Cowley, (2003), Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: Dependence on the effective ionospheric Pedersen conductivity and iogenic plasma mass outflow rate, Ann. Geophys., 21, 1419-1441, doi: 10.5194/angeo-21-1419-2003.
Nichols, J. D., E. J. Bunce, J. T. Clarke, S. W. H. Cowley, J.-C. Gérard, D. Grodent, and, W. R. Pryor, (2007), Response of Jupiter's UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign, J. Geophys. Res., 112, A02203, doi: 10.1029/2006JA012005.
Nichols, J. D., J. T. Clarke, J. C. Gérard, D. Grodent, and, K. C. Hansen, (2009), Variation of different components of Jupiter's auroral emission, J. Geophys. Res., 114, A06210, doi: 10.1029/2009JA014051.
Pallier, L., and, R. Prangé, (2001), More about the structure of the high latitude Jovian aurorae, Planet Space. Sci., 49, 1159-1173, doi: 10.1016/S0032-0633(01)00023-X.
Prangé, R., G. Chagnon, M. G. Kivelson, T. A. Livengood, and, W. Kurth, (2001), Temporal monitoring of Jupiter's auroral activity with IUE during the Galileo mission. Implications for magnetospheric processes, Planet. Space. Sci., 49, 405-415, doi: 10.1016/S0032-0633(00)00161-6.
Pryor, W. R., et al., (2005), Cassini UVIS observations of Jupiter's auroral variability, Icarus, 178, 312-326, doi: 10.1016/j.icarus.2005.05.021.
Radioti, A., A. T. Tomás, D. Grodent, J.-C. Gérard, J. Gustin, B. Bonford, N. Krupp, J. Woch, and, J. D. Menietti, (2009), Equatorward diffuse auroral emissions at Jupiter: Simultaneous HST and Galileo observations, Geophys. Res. Lett., 36, L07101, doi: 10.1029/2009GL037857.
Ray, L. C., R. E. Ergun, P. A. Delamere, and, F. Bagenal, (2012), Magnetosphere-ionosphere coupling at Jupiter: A parameter space study, J. Geophys. Res., 117, A01205, doi: 10.1029/2011JA016899.
Southwood, D. J., and, M. G. Kivelson, (2001), A new perspective concerning the influence of the solar wind on the Jovian magnetosphere, J. Geophys. Res., 106, 6123-6130, doi: 10.1029/2000JA000236.
Tao, C., R. Kataoka, H. Fukunishi, Y. Takahashi, and, T. Yokoyama, (2005), Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements, J. Geophys. Res., 110, A11208, doi: 10.1029/2004JA010959.
Tao, C., T. Kimura, S. V. Badman, N. André, F. Tsuchiya, G. Murakami, K. Yoshioka, I. Yoshikawa, A. Yamazaki, and, M. Fujimoto, (2015), Variation of Jupiter's aurora observed by Hisaki/EXCEED: 2. Estimations of auroral parameters and magnetospheric dynamics, J. Geophys. Res. Space Physics, 120, doi: 10.1002/2015JA021272.
Thorne, R. M., T. P. Armstrong, S. Stone, D. J. Williams, R. W. McEntire, S. J. Bolton, D. A. Gurnett, and, M. G. Kivelson, (1997), Galileo evidence for rapid interchange transport in the Io torus, Geophys. Res. Lett., 24, 2131, doi: 10.1029/97GL01788.
Tomás, A. T., J. Woch, N. Krupp, A. Lagg, K.-H. Glassmeier, and, W. S. Kurth, (2004), Energetic electrons in the inner part of the Jovian magnetosphere and their relation to auroral emissions, J. Geophys. Res., 109, A06203, doi: 10.1029/2004JA010405.
Tsuchiya, F., et al., (2015), Local electron heating in Io plasma torus associated with Io from HISAKI satellite observation, J. Geophys. Res. Space Physics, 120, 10,317-10,333, doi: 10.1002/2015JA021420.
Vasavada, A. R., A. H. Bouchez, A. P. Ingersoll, B. Little, C. D. Anger, and, G. S. Team, (1999), Jupiter's visible aurora and Io footprint, J. Geophys. Res., 104, 27,133-27,142, doi: 10.1029/1999JE001055.
Vogt, M. F., M. G. Kivelson, K. K. Khurana, R. J. Walker, B. Bonfond, D. Grodent, and, A. Radioti, (2011), Improved mapping of Jupiter's auroral features to magnetospheric sources, J. Geophys. Res., 116, A03220, doi: 10.1029/2010JA016148.
Yamazaki, A., et al., (2014), Field-of-view guiding camera on the HISAKI (SPRINT-A) Satellite, Space Sci. Rev., 184, 259-274, doi: 10.1007/s11214-014-0106-y.
Yates, J. N., N. Achilleos, and, P. Guio, (2014), Response of the Jovian thermosphere to a transient 'pulse' in solar wind pressure, Planet. Space. Sci., 91, 27-44, doi: 10.1016/j.pss.2013.11.009.
Yoneda, M., M. Kagitani, and, S. Okano, (2009), Short-term variability of Jupiter's extended sodium nebula, Icarus, 204 (2), 589-596, doi: 10.1016/j.icarus.2009.07.023.
Yoneda, M., H. Nozawa, H. Misawa, M. Kagitani, and, S. Okano, (2010), Jupiter's magnetospheric change by Io's volcanoes, Geophys. Res. Lett., 37, L11202, doi: 10.1029/2010GL043656.
Yoneda, M., F. Tsuchiya, H. Misawa, B. Bonfond, C. Tao, M. Kagitani, and, S. Okano, (2013), Io's volcanism controls Jupiter's radio emissions, Geophys. Res. Lett., 40 (4), 671-675.
Yoneda, M., M. Kagitani, F. Tsuchiya, T. Sakanoi, and, S. Okano, (2015), Brightening event seen in observations of Jupiter's extended sodium nebula, Icarus, 261, 31-33, doi: 10.1016/j.icarus.2015.07.037.
Yoshikawa, I., et al., (2014), Extreme ultraviolet radiation measurement for planetary atmospheres/magnetospheres from the Earth-orbiting spacecraft (extreme ultraviolet spectroscope for exospheric dynamics: EXCEED), Space Sci. Rev., 184, 237-258, doi: 10.1007/s11214-014-0077-z.