Jupiter; Electron energy levels; Electrons; Magnetosphere; Aurora; Auroral emission; Auroral oval; Electron energies; Field aligned currents; Jupiters; Low latitudes; Source region; Electron temperature; Lisri
Badman, S. V.; Physics Department, Lancaster University, Lancaster, United Kingdom
Bonfond, Bertrand ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Fujimoto, M.; Institute of Space and Astronautical Science, Sagamihara, Japan
Gray, R. L.; Physics Department, Lancaster University, Lancaster, United Kingdom
Kasaba, Y.; Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan
Kasahara, S.; Institute of Space and Astronautical Science, Sagamihara, Japan
Kimura, T.; RIKEN, Wako, Japan
Melin, H.; Department of Physics, University of Leicester, Leicester, United Kingdom
Nichols, J. D.; Department of Physics, University of Leicester, Leicester, United Kingdom
Steffl, A. J.; Department of Space Studies, Southwest Research Institute, Boulder, CO, United States
Tao, C.; NICT, Tokyo, Japan
Tsuchiya, F.; Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan
Yamazaki, A.; Institute of Space and Astronautical Science, Sagamihara, Japan
Yoneda, M.; Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan, Kiepenheuer Institute for Solar Physics, Freiburg im Breisgau, Germany
Yoshikawa, I.; Department of Complexity Science and Engineering, University of Tokyo, Tokyo, Japan
Yoshioka, K.; Graduate School of Science, University of Tokyo, Tokyo, Japan
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bonfond, B., (2012), When Moons create aurora: The satellite footprints on giant planets, in Auroral Phenomenology and Magnetospheric Processes: Earth And Other Planets, Geophys. Monogr. Ser., vol. 197, edited by, A. Keiling, et al., pp. 133-140, AGU, Washington, D. C.
Bonfond, B., D. Grodent, J.-C. Gérard, A. Radioti, V. Dols, P. A. Delamere, and, J. T. Clarke, (2009), The Io UV footprint: Location, inter-spot distances and tail vertical extent, J. Geophys. Res., 114, doi: 10.1029/2009JA014312.
Bonfond, B., D. Grodent, J.-C. Gérard, T. Stallard, J. T. Clarke, M. Yoneda, A. Radioti, and, J. Gustin, (2012), Auroral evidence of Io's control over the magnetosphere of Jupiter, Geophys. Res. Lett., 39, L01105, doi: 10.1029/2011GL050253.
Clarke, J. T., J. Ajello, G. Ballester, L. Ben Jaffel, J. Connerney, J.-C. Gérard, G. R. Gladstone, D. Grodent, W. Pryor, J. Trauger, and, J. H. Waite, (2002), Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter, Nature, 415, 997-1000.
Clarke, J. T., et al., (2009), Response of Jupiter's and Saturn's auroral activity to the solar wind, J. Geophys. Res., 114, A05210, doi: 10.1029/2008JA013694.
Connerney, J. E. P., R. Baron, T. Satoh, and, T. Owen, (1993), Images of Excited H at the foot of the Io flux tube in Jupiter's atmosphere, Science, 262, 1035-1038, doi: 10.1126/science.262.5136.1035.
Cowley, S. W. H., and, E. J. Bunce, (2001), Origin of the main auroral oval in Jupiter's coupled magnetosphere-ionosphere system, Planet. Space. Sci., 49, 1067-1088, doi: 10.1016/S0032-0633(00)00167-7.
Cowley, S. W. H., J. D. Nichols, and, D. J. Andrews, (2007), Modulation of Jupiter's plasma flow, polar currents, and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: A simple theoretical model, Ann. Geophys., 25, 1433-1463, doi: 10.5194/angeo-25-1433-2007.
Dumont, M., D. Grodent, A. Radioti, and, J.-C. Gérard, (2014), Jupiter's equatorward auroral features: Possible signatures of magnetospheric injections, J. Geophys. Res. Space Physics, 119 (12), 10,068-10,077, doi: 10.1002/2014JA020527.
Gérard, J.-C., B. Bonfond, D. Grodent, A. Radioti, J. T. Clarke, G. R. Gladstone, J. H. Waite, D. Bisikalo, and, V. I. Shematovich, (2014), Mapping the electron energy in Jupiter's aurora: Hubble spectral observations, J. Geophys. Res. Space Physics, 119, 9072-9088, doi: 10.1002/2014JA020514.
Gladstone, G. R., et al., (2002), A pulsating auroral X-ray hot spot on Jupiter, Nature, 415, 1000-1003.
Grodent, D., J. T. Clarke, J. Kim, J. H. Waite, and, S. W. H. Cowley, (2003a), Jupiter's main auroral oval observed with HST-STIS, J. Geophys. Res., 108 (A11), 1389, doi: 10.1029/2003JA009921.
Grodent, D., J. T. Clarke, J. H. Waite, S. W. H. Cowley, J.-C. Gérard, and, J. Kim, (2003b), Jupiter's polar auroral emissions, J. Geophys. Res., 108, 1366, doi: 10.1029/2003JA010017.
Grodent, D., J.-C. Gérard, A. Radioti, B. Bonfond, and, A. Saglam, (2008), Jupiter's changing auroral location, J. Geophys. Res., 113 (A01206), doi: 10.1029/2007JA012601.
Gurnett, D. A., et al., (2002), Control of Jupiter's radio emission and aurorae by the solar wind, Nature, 415, 985-987.
Gustin, J., J.-C. Gérard, D. Grodent, S. W. H. Cowley, J. T. Clarke, and, A. Grard, (2004), Energy-flux relationship in the FUV Jovian aurora deduced from HST-STIS spectral observations, J. Geophys. Res., 109, A10205, doi: 10.1029/2003JA010365.
Gustin, J., B. Bonfond, D. Grodent, and, J.-C. Gérard, (2012), Conversion from HST ACS and STIS auroral counts into brightness, precipitated power, and radiated power for H2 giant planets, J. Geophys. Res., 117, A07316, doi: 10.1029/2012JA017607.
Hill, T. W., (2001), The Jovian auroral oval, J. Geophys. Res., 106, 8101-8108, doi: 10.1029/2000JA000302.
Kimura, T., et al., (2015), Transient internally-driven aurora at Jupiter discovered by Hisaki and the Hubble Space Telescope, Geophys. Res. Lett., 42, 1662-1668, doi: 10.1002/2015GL063272.
Kivelson, M. G., K. K. Khurana, C. T. Russell, and, R. J. Walker, (1997), Intermittent short-duration magnetic field anomalies in the Io torus: Evidence for plasma interchange? Geophys. Res. Lett., 24, 2127-2130, doi: 10.1029/97GL02202.
Lundin, R., and, I. Sandahl, (1978), Some characteristics of the parallel electric field acceleration of electrons over discrete auroral arcs as observed from two rocket flights, ESA SP-135, 125.
Mauk, B. H., D. J. Williams, R. W. McEntire, K. K. Khurana, and, J. G. Roederer, (1999), Storm-like dynamics of Jupiter's inner and middle magnetosphere, J. Geophys. Res., 104, 22,759-22,778, doi: 10.1029/1999JA900097.
Mauk, B. H., J. T. Clarke, D. Grodent, J. H. Waite, C. P. Paranicas, and, D. J. Williams, (2002), Transient aurora on Jupiter from injections of magnetospheric electrons, Nature, 415, 1003-1005.
Nichols, J. D., (2011), Magnetosphere-ionosphere coupling in Jupiter's middle magnetosphere: Computations including a self-consistent current sheet magnetic field model, J. Geophys. Res., 116, A10232, doi: 10.1029/2011JA016922.
Nichols, J. D., and, S. W. H. Cowley, (2003), Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: Dependence on the effective ionospheric Pedersen conductivity and iogenic plasma mass outflow rate, Ann. Geophys., 21, 1419-1441, doi: 10.5194/angeo-21-1419-2003.
Nichols, J. D., E. J. Bunce, J. T. Clarke, S. W. H. Cowley, J.-C. Gérard, D. Grodent, and, W. R. Pryor, (2007), Response of Jupiter's UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign, J. Geophys. Res., 112, A02203, doi: 10.1029/2006JA012005.
Nichols, J. D., J. T. Clarke, J. C. Gérard, D. Grodent, and, K. C. Hansen, (2009), Variation of different components of Jupiter's auroral emission, J. Geophys. Res., 114, A06210, doi: 10.1029/2009JA014051.
Pallier, L., and, R. Prangé, (2001), More about the structure of the high latitude Jovian aurorae, Planet Space. Sci., 49, 1159-1173, doi: 10.1016/S0032-0633(01)00023-X.
Prangé, R., G. Chagnon, M. G. Kivelson, T. A. Livengood, and, W. Kurth, (2001), Temporal monitoring of Jupiter's auroral activity with IUE during the Galileo mission. Implications for magnetospheric processes, Planet. Space. Sci., 49, 405-415, doi: 10.1016/S0032-0633(00)00161-6.
Pryor, W. R., et al., (2005), Cassini UVIS observations of Jupiter's auroral variability, Icarus, 178, 312-326, doi: 10.1016/j.icarus.2005.05.021.
Radioti, A., A. T. Tomás, D. Grodent, J.-C. Gérard, J. Gustin, B. Bonford, N. Krupp, J. Woch, and, J. D. Menietti, (2009), Equatorward diffuse auroral emissions at Jupiter: Simultaneous HST and Galileo observations, Geophys. Res. Lett., 36, L07101, doi: 10.1029/2009GL037857.
Ray, L. C., R. E. Ergun, P. A. Delamere, and, F. Bagenal, (2012), Magnetosphere-ionosphere coupling at Jupiter: A parameter space study, J. Geophys. Res., 117, A01205, doi: 10.1029/2011JA016899.
Southwood, D. J., and, M. G. Kivelson, (2001), A new perspective concerning the influence of the solar wind on the Jovian magnetosphere, J. Geophys. Res., 106, 6123-6130, doi: 10.1029/2000JA000236.
Tao, C., R. Kataoka, H. Fukunishi, Y. Takahashi, and, T. Yokoyama, (2005), Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements, J. Geophys. Res., 110, A11208, doi: 10.1029/2004JA010959.
Tao, C., T. Kimura, S. V. Badman, N. André, F. Tsuchiya, G. Murakami, K. Yoshioka, I. Yoshikawa, A. Yamazaki, and, M. Fujimoto, (2015), Variation of Jupiter's aurora observed by Hisaki/EXCEED: 2. Estimations of auroral parameters and magnetospheric dynamics, J. Geophys. Res. Space Physics, 120, doi: 10.1002/2015JA021272.
Thorne, R. M., T. P. Armstrong, S. Stone, D. J. Williams, R. W. McEntire, S. J. Bolton, D. A. Gurnett, and, M. G. Kivelson, (1997), Galileo evidence for rapid interchange transport in the Io torus, Geophys. Res. Lett., 24, 2131, doi: 10.1029/97GL01788.
Tomás, A. T., J. Woch, N. Krupp, A. Lagg, K.-H. Glassmeier, and, W. S. Kurth, (2004), Energetic electrons in the inner part of the Jovian magnetosphere and their relation to auroral emissions, J. Geophys. Res., 109, A06203, doi: 10.1029/2004JA010405.
Tsuchiya, F., et al., (2015), Local electron heating in Io plasma torus associated with Io from HISAKI satellite observation, J. Geophys. Res. Space Physics, 120, 10,317-10,333, doi: 10.1002/2015JA021420.
Vasavada, A. R., A. H. Bouchez, A. P. Ingersoll, B. Little, C. D. Anger, and, G. S. Team, (1999), Jupiter's visible aurora and Io footprint, J. Geophys. Res., 104, 27,133-27,142, doi: 10.1029/1999JE001055.
Vogt, M. F., M. G. Kivelson, K. K. Khurana, R. J. Walker, B. Bonfond, D. Grodent, and, A. Radioti, (2011), Improved mapping of Jupiter's auroral features to magnetospheric sources, J. Geophys. Res., 116, A03220, doi: 10.1029/2010JA016148.
Yamazaki, A., et al., (2014), Field-of-view guiding camera on the HISAKI (SPRINT-A) Satellite, Space Sci. Rev., 184, 259-274, doi: 10.1007/s11214-014-0106-y.
Yates, J. N., N. Achilleos, and, P. Guio, (2014), Response of the Jovian thermosphere to a transient 'pulse' in solar wind pressure, Planet. Space. Sci., 91, 27-44, doi: 10.1016/j.pss.2013.11.009.
Yoneda, M., M. Kagitani, and, S. Okano, (2009), Short-term variability of Jupiter's extended sodium nebula, Icarus, 204 (2), 589-596, doi: 10.1016/j.icarus.2009.07.023.
Yoneda, M., H. Nozawa, H. Misawa, M. Kagitani, and, S. Okano, (2010), Jupiter's magnetospheric change by Io's volcanoes, Geophys. Res. Lett., 37, L11202, doi: 10.1029/2010GL043656.
Yoneda, M., F. Tsuchiya, H. Misawa, B. Bonfond, C. Tao, M. Kagitani, and, S. Okano, (2013), Io's volcanism controls Jupiter's radio emissions, Geophys. Res. Lett., 40 (4), 671-675.
Yoneda, M., M. Kagitani, F. Tsuchiya, T. Sakanoi, and, S. Okano, (2015), Brightening event seen in observations of Jupiter's extended sodium nebula, Icarus, 261, 31-33, doi: 10.1016/j.icarus.2015.07.037.
Yoshikawa, I., et al., (2014), Extreme ultraviolet radiation measurement for planetary atmospheres/magnetospheres from the Earth-orbiting spacecraft (extreme ultraviolet spectroscope for exospheric dynamics: EXCEED), Space Sci. Rev., 184, 237-258, doi: 10.1007/s11214-014-0077-z.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.