Article (Scientific journals)
Low-rank plus sparse decomposition for exoplanet detection in direct-imaging ADI sequences. The LLSG algorithm
Gómez González, Carlos; Absil, Olivier; Absil, P.-A. et al.
2016In Astronomy and Astrophysics, 589, p. 54
Peer Reviewed verified by ORBi
 

Files


Full Text
aa27387-15.pdf
Publisher postprint (1.53 MB)
Download

http://www.aanda.org/articles/aa/abs/2016/05/aa27387-15/aa27387-15.html - Copyright ESO 2016, published by EDP Sciences


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
methods: data analysis; techniques: high angular resolution; techniques: image processing; planetary systems; planets and satellites: detection
Abstract :
[en] Context. Data processing constitutes a critical component of high-contrast exoplanet imaging. Its role is almost as important as the choice of a coronagraph or a wavefront control system, and it is intertwined with the chosen observing strategy. Among the data processing techniques for angular differential imaging (ADI), the most recent is the family of principal component analysis (PCA) based algorithms. It is a widely used statistical tool developed during the first half of the past century. PCA serves, in this case, as a subspace projection technique for constructing a reference point spread function (PSF) that can be subtracted from the science data for boosting the detectability of potential companions present in the data. Unfortunately, when building this reference PSF from the science data itself, PCA comes with certain limitations such as the sensitivity of the lower dimensional orthogonal subspace to non-Gaussian noise. <BR /> Aims: Inspired by recent advances in machine learning algorithms such as robust PCA, we aim to propose a localized subspace projection technique that surpasses current PCA-based post-processing algorithms in terms of the detectability of companions at near real-time speed, a quality that will be useful for future direct imaging surveys. <BR /> Methods: We used randomized low-rank approximation methods recently proposed in the machine learning literature, coupled with entry-wise thresholding to decompose an ADI image sequence locally into low-rank, sparse, and Gaussian noise components (LLSG). This local three-term decomposition separates the starlight and the associated speckle noise from the planetary signal, which mostly remains in the sparse term. We tested the performance of our new algorithm on a long ADI sequence obtained on β Pictoris with VLT/NACO. <BR /> Results: Compared to a standard PCA approach, LLSG decomposition reaches a higher signal-to-noise ratio and has an overall better performance in the receiver operating characteristic space. This three-term decomposition brings a detectability boost compared to the full-frame standard PCA approach, especially in the small inner working angle region where complex speckle noise prevents PCA from discerning true companions from noise.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Gómez González, Carlos ;  Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Astroph. extragalactique et observations spatiales (AEOS)
Absil, Olivier  ;  Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Astroph. extragalactique et observations spatiales (AEOS)
Absil, P.-A.;  Department of Mathematical Engineering, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
Van Droogenbroeck, Marc  ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Mawet, D.;  Department of Astronomy, California Institute of Technology, Pasadena, CA, 91125, USA
Surdej, Jean  ;  Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Astroph. extragalactique et observations spatiales (AEOS)
Language :
English
Title :
Low-rank plus sparse decomposition for exoplanet detection in direct-imaging ADI sequences. The LLSG algorithm
Publication date :
13 April 2016
Journal title :
Astronomy and Astrophysics
ISSN :
0004-6361
eISSN :
1432-0746
Publisher :
EDP Sciences, Les Ulis, France
Volume :
589
Pages :
A54
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
FP7 - 337569 - VORTEX - Taking extrasolar planet imaging to a new level with vector vortex coronagraphy
Name of the research project :
VORTEX
Funders :
CE - Commission Européenne
Available on ORBi :
since 27 April 2016

Statistics


Number of views
167 (26 by ULiège)
Number of downloads
83 (3 by ULiège)

Scopus citations®
 
49
Scopus citations®
without self-citations
32
OpenCitations
 
44
OpenAlex citations
 
42

Bibliography


Similar publications



Contact ORBi