methods: data analysis; techniques: high angular resolution; techniques: image processing; planetary systems; planets and satellites: detection
Abstract :
[en] Context. Data processing constitutes a critical component of high-contrast exoplanet imaging. Its role is almost as important as the choice of a coronagraph or a wavefront control system, and it is intertwined with the chosen observing strategy. Among the data processing techniques for angular differential imaging (ADI), the most recent is the family of principal component analysis (PCA) based algorithms. It is a widely used statistical tool developed during the first half of the past century. PCA serves, in this case, as a subspace projection technique for constructing a reference point spread function (PSF) that can be subtracted from the science data for boosting the detectability of potential companions present in the data. Unfortunately, when building this reference PSF from the science data itself, PCA comes with certain limitations such as the sensitivity of the lower dimensional orthogonal subspace to non-Gaussian noise. <BR /> Aims: Inspired by recent advances in machine learning algorithms such as robust PCA, we aim to propose a localized subspace projection technique that surpasses current PCA-based post-processing algorithms in terms of the detectability of companions at near real-time speed, a quality that will be useful for future direct imaging surveys. <BR /> Methods: We used randomized low-rank approximation methods recently proposed in the machine learning literature, coupled with entry-wise thresholding to decompose an ADI image sequence locally into low-rank, sparse, and Gaussian noise components (LLSG). This local three-term decomposition separates the starlight and the associated speckle noise from the planetary signal, which mostly remains in the sparse term. We tested the performance of our new algorithm on a long ADI sequence obtained on β Pictoris with VLT/NACO. <BR /> Results: Compared to a standard PCA approach, LLSG decomposition reaches a higher signal-to-noise ratio and has an overall better performance in the receiver operating characteristic space. This three-term decomposition brings a detectability boost compared to the full-frame standard PCA approach, especially in the small inner working angle region where complex speckle noise prevents PCA from discerning true companions from noise.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Gómez González, Carlos ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Astroph. extragalactique et observations spatiales (AEOS)
Absil, Olivier ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Astroph. extragalactique et observations spatiales (AEOS)
Absil, P.-A.; Department of Mathematical Engineering, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
Van Droogenbroeck, Marc ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Mawet, D.; Department of Astronomy, California Institute of Technology, Pasadena, CA, 91125, USA
Surdej, Jean ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Astroph. extragalactique et observations spatiales (AEOS)
Language :
English
Title :
Low-rank plus sparse decomposition for exoplanet detection in direct-imaging ADI sequences. The LLSG algorithm
Absil, O., Milli, J., Mawet, D., et al. 2013, A&A, 559, L12
Amara, A., & Quanz, S. P. 2012, MNRAS, 427, 948
Barrett, H. H., Myers, K. J., Devaney, N., Dainty, J. C., & Caucci, L. 2006, in Advances in Adaptive Optics II, eds. B. L. Ellerbroek, & D. Bonaccini Calia, SPIE Conf. Ser., 6272, 1
Braham, M., Lejeune, A., & Van Droogenbroeck, M. 2014, in Int. Conf. on 3D Imaging (IC3D), Liège, Belgium, 1
Candès, E. J., Li, X., Ma, Y., & Wright, J. 2009, Arxiv e-prints [arXiv:0912.3599]
Cantalloube, F., Mouillet, D., Mugnier, L. M., et al. 2015, A&A, 582, A89
Eckart, C., & Young, G. 1936, Psychometrika, 1, 211
Fitzgerald, M. P., & Graham, J. R. 2006, ApJ, 637, 541
Hotelling, H. 1933, J. Educational Psychology, 24, 417
Jee, M. J., Blakeslee, J. P., Sirianni, M., et al. 2007, PASP, 119, 1403
Lafrenière, D., Marois, C., Doyon, R., Nadeau, D., & Artigau, É. 2007, ApJ, 660, 770
Lagrange, A.-M., Bonnefoy, M., Chauvin, G., et al. 2010, Science, 329, 57
Marois, C., Doyon, R., Nadeau, D., Racine, R., & Walker, G. A. H. 2003, in EAS Pub. Ser. 8, eds. C. Aime, & R. Soummer, 233
Marois, C., Lafrenière, D., Doyon, R., Macintosh, B., & Nadeau, D. 2006, ApJ, 641, 556
Marois, C., Lafrenière, D., Macintosh, B., & Doyon, R. 2008, ApJ, 673, 647
Marois, C., Correia, C., Galicher, R., et al. 2014, in SPIE Conf. Ser., 9148
Mawet, D., Pueyo, L., Lawson, P., et al. 2012, in Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, eds. M. C. Clampin, G. G. Fazio, H. A. MacEwen, & J. M. Oschmann, SPIE Conf. Ser., 8442, 04
Mawet, D., Milli, J., Wahhaj, Z., et al. 2014, ApJ, 792, 97
Mugnier, L. M., Cornia, A., Sauvage, J.-F., et al. 2009, J. Opt. Soc. Am. A, 26, 1326
Nelder, J. A., & Mead, R. 1965, Comput. J., 7, 308
Quanz, S. P., Amara, A., Meyer, M. R., et al. 2015, ApJ, 807, 64
Soummer, R., & Aime, C. 2004, in Advancements in Adaptive Optics, eds. D. Bonaccini Calia, B. L. Ellerbroek, & R. Ragazzoni, SPIE Conf. Ser., 5490, 495
Soummer, R., Pueyo, L., & Larkin, J. 2012, ApJ, 755, L28
Sparks, W. B., & Ford, H. C. 2002, ApJ, 578, 543
Wahhaj, Z., Cieza, L. A., Mawet, D., et al. 2015, A&A, 581, A24
Zhou, T., & Tao, D. 2011a, ArXiv e-prints [arXiv:1112.5215]
Zhou, T., & Tao, D. 2011b, in Proc. 28th International Conference on Machine Learning (ICML-11), eds. L. Getoor, & T. Scheffer, ICML '11 (New York: ACM), 33
Zhou, T., & Tao, D. 2013, ArXiv e-prints [arXiv:1309.0302]