Multi-species measurements of nitrogen isotopic composition reveal the spatial constraints and biological drivers of ammonium attenuation across a highly contaminated groundwater system
[en] Groundwater under industrial sites is characterised by heterogeneous chemical mixtures, making it difficult to assess the fate and transport of individual contaminants. Quantifying the in-situ biological removal (attenuation) of nitrogen (N) is particularly difficult due to its reactivity and ubiquity. Here a multi-isotope approach is developed to distinguish N sources and sinks within groundwater affected by complex industrial pollution. Samples were collected from 70 wells across the two aquifers underlying a historic industrial area in Belgium. Below the industrial site the groundwater contained up to 1000 mg Nl-1 ammonium (NH4
+) and 300 mg N l-1 nitrate (NO3-), while downgradient concentrations decreased to ~1
mg l-1 DIN ([DIN] = [NH4+-N] + [NO3--N] + [NO2--N]). Mean δ1534 N-DIN increased from ~2‰ to +20‰ over this flow path, broadly confirming that biological N attenuation drove the measured concentration decrease. Multi-variate analysis of water chemistry identified two distinct NH4+ sources (δ15N-NH4+ from -14‰ and +5‰) within the contaminated zone of both aquifers. Nitrate dual isotopes co-varied (δ15 N: -3‰ - +60‰; δ18O: 0‰ - +50‰) within the range expected for coupled nitrification and denitrification of the identified sources. The fact that δ15N-NO2- values were 50‰ to 20‰ less than δ15N-NH4+ values in 40 the majority of wells confirmed that nitrification controlled N turnover across the site. However, the fact that δ15N-NO2- was greater than δ15N-NH4+ in wells with the highest [NH4+] shows that an autotrophic NO2- reduction pathway (anaerobic NH4+ oxidation or nitrifier-denitrification) drove N attenuation closest to the contaminant plume. This direct empirical evidence that both autotrophic and heterotrophic biogeochemical processes drive N attenuation in contaminated aquifers demonstrates the power of multiple N isotopes to untangle N cycling in highly complex systems.
Wells, Naomi S.; Helmholtz Centre for Environmental Research - UFZ Leipzig > Department of Catchment Hydrology
Hakoun, Vivien ; Université de Liège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Brouyère, Serge ; Université de Liège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Knoeller, Kay; Helmholtz Centre for Environmental Research – UFZ Leipzig > Department of Catchment Hydrology
Language :
English
Title :
Multi-species measurements of nitrogen isotopic composition reveal the spatial constraints and biological drivers of ammonium attenuation across a highly contaminated groundwater system
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bai E., Boutton T.W., Liu F., Wu X.B., Archer S.R. N-15 isoscapes in a subtropical savanna parkland: spatial-temporal perspectives. Ecosphere 2013, 4(1):17.
Bourbonnais A., Altabet M.A., Charoenpong C.N., Larkum J., Hu H., Bange H.W., Stramma L. N-loss isotope effects in the Peru oxygen minimum zone studied using a mesoscale eddy as a natural tracer experiment. Glob. Biogeochem. Cy. 2015, 29(6):793-811.
Brunner B., Contreras S., Lehmann M.F., Matantseva O., Rollog M., Kalvelage T., Klockgether G., Lavik G., Jetten M.S.M., Kartal B., Kuypers M.M.M. Nitrogen isotope effects induced by anammox bacteria. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(47):18994-18999.
Bryan B.A., Shearer G., Skeeters J.L., Kohl D.H. Variable expression of the nitrogen isotope effect associated with denitrification of nitrite. J. Biol. Chem. 1983, 258(14):8613-8617.
Buchwald C., Casciotti K.L. Isotopic ratios of nitrite as tracers of the sources and age of oceanic nitrite. Nat. Geosci. 2013, 6(4):308-313.
Burgin A.J., Hamilton S.K. NO3--driven SO42- production in freshwater ecosystems: implications for N and S Cycling. Ecosystems 2008, 11(6):908-922.
Casciotti K.L., Sigman D.M., Hastings M.G., Bohlke J.K., Hilkert A. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal. Chem. 2002, 74(19):4905-4912.
Casciotti K.L., Sigman D.M., Ward B.B. Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria. Geomicrobiol. J. 2003, 20(4):335-353.
Clague J.C., Stenger R., Clough T.J. Evaluation of the stable isotope signatures of nitrate to detect denitrification in a shallow groundwater system in New Zealand. Agric. Ecosyst. Environ. 2015, 202(0):188-197.
Clark I., Timlin R., Bourbonnais A., Jones K., Lafleur D., Wickens K. Origin and fate of industrial ammonium in anoxic ground water - (15)N evidence for anaerobic oxidation (anammox). Ground Water Monit. Remed. 2008, 28(3):73-82.
Colliver B.B., Stephenson T. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnol. Adv. 2000, 18(3):219-232.
Dähnke K., Thamdrup B. Nitrogen isotope dynamics and fractionation during sedimentary denitrification in Boknis Eck, Baltic Sea. Biogeoscience 2013, 10(5):3079-3088.
Dhondt K., Boeckx P., Van Cleemput O., Hofman G. Quantifying nitrate retention processes in a riparian buffer zone using the natural abundance of N-15 in NO3. Rapid Commun. Mass Spectrom. 2003, 17(23):2597-2604.
Fang Y.T., Koba K., Makabe A., Takahashi C., Zhu W.X., Hayashi T., Hokari A.A., Urakawa R., Bai E., Houlton B.Z., Xi D., Zhang S.S., Matsushita K., Tu Y., Liu D.W., Zhu F.F., Wang Z.Y., Zhou G.Y., Chen D.X., Makita T., Toda H., Liu X.Y., Chen Q.S., Zhang D.Q., Li Y.D., Yoh M. Microbial denitrification dominates nitrate losses from forest ecosystems. Proc. Natl. Acad. Sci. U. S.A. 2015, 112(5):1470-1474.
Fenech C., Rock L., Nolan K., Tobin J., Morrissey A. The potential for a suite of isotope and chemical markers to differentiate sources of nitrate contamination: a review. Water Res. 2012, 46(7):2023-2041.
Galloway J.N., Aber J.D., Erisman J.W., Seitzinger S.P., Howarth R.W., Cowling E.B., Cosby B.J. The nitrogen cascade. Bioscience 2003, 53(4):341-356.
Gooddy D.C., Macdonald D.M.J., Lapworth D.J., Bennett S.A., Griffiths K.J. Nitrogen sources, transport and processing in pen-urban floodplains. Sci. Total Environ. 2014, 494:28-38.
Granger J., Sigman D.M., Lehmann M.F., Tortell P.D. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol. Oceanogr. 2008, 53(6):2533-2545.
Griebler C., Avramov M. Groundwater ecosystem services: a review. Freshw. Sci. 2015, 34(1):355-367.
Hatzinger P.B., Bohlke J.K., Sturchio N.C. Application of stable isotope ratio analysis for biodegradation monitoring in groundwater. Curr. Opin. Biotechnol. 2013, 24(3):542-549.
Hinkle S.R., Bohlke J.K., Fisher L.H. Mass balance and isotope effects during nitrogen transport through septic tank systems with packed-bed (sand) filters. Sci. Total Environ. 2008, 407(1):324-332.
Hinkle S.R., Tesoriero A.J. Nitrogen speciation and trends, and prediction of denitrification extent, in shallow US groundwater. J. Hydrol. 2014, 509:343-353.
Hood J.L.A., Taylor W.D., Schiff S.L. Examining the fate of WWTP effluent nitrogen using delta N-15-NH4 (+), delta N-15-NO (3) (-) and delta N-15 of submersed macrophytes. Aquat. Sci. 2014, 76(2):243-258.
Hosono T., Tokunaga T., Kagabu M., Nakata H., Orishikida T., Lin I.T., Shimada J. The use of delta15N and delta18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution. Water Res. 2013, 47(8):2661-2675.
Izbicki J.A. Fate of nutrients in shallow groundwater receiving treated septage, Malibu, CA. Groundwater 2014, 52:218-233.
Izbicki J.A., Flint A.L., O'Leary D.R., Nishikawa T., Martin P., Johnson R.D., Clark D.A. Storage and mobilization of natural and septic nitrate in thick unsaturated zones, California. J. Hydrol. 2015, 524:147-165.
Jones L.C., Peters B., Lezama Pacheco J.S., Casciotti K.L., Fendorf S. Stable isotopes and iron oxide mineral products as markers of chemodenitrification. Environ. Sci. Technol. 2015, 49(6):3444-3452.
Karthic I., Brugam R.B., Retzlaff W., Johnson K. The impact of nitrogen contamination and river modification on a Mississippi River floodplain lake. Sci. Total Environ. 2013, 463:734-742.
Kellogg D.Q., Gold A.J., Groffman P.M., Addy K., Stolt M.H., Blazejewski G. In situ ground water denitrification in stratified, permeable soils underlying riparian wetlands. J. Environ. Qual. 2005, 34(2):524-533.
Kleinsteuber S., Schleinitz K.M., Vogt C. Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers. Appl. Microbiol. Biotechnol. 2012, 94(4):851-873.
Klove B., Ala-Aho P., Bertrand G., Gurdak J.J., Kupfersberger H., Kvaerner J., Muotka T., Mykra H., Preda E., Rossi P., Uvo C.B., Velasco E., Pulido-Velazquez M. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 2014, 518:250-266.
Koh D.C., Mayer B., Lee K.S., Ko K.S. Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers. J. Contam. Hydrol. 2010, 118(1-2):62-78.
Kool D.M., Wrage N., Zechmeister-Boltenstern S., Pfeffer M., Brus D., Oenema O., Van Groenigen J.W. Nitrifier denitrification can be a source of N2O from soil: a revised approach to the dual-isotope labelling method. Eur. J. Soil Sci. 2010, 61(5):759-772.
Kritee K., Sigman D.M., Granger J., Ward B.B., Jayakumar A., Deutsch C. Reduced isotope fractionation by denitrification under conditions relevant to the ocean. Geochim. Cosmochim. Acta 2012, 92:243-259.
Mariotti A., Germon J.C., Hubert P., Kaiser P., Letolle R., Tardieux A., Tardieux P. Experimental determination of nitrogen kinetic isotope fractionation - some principles - illustration for the denitrification and nitrification processes. Plant Soil 1981, 62(3):413-430.
Marliere R. Livret explicatif de la feuille Beloeil-Baudour 139 de la carte gèologique au 1/25000 1977, Service Gèolique Belge.
McIlvin M.R., Altabet M.A. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal. Chem. 2005, 77(17):5589-5595.
McIlvin M.R., Casciotti K.L. Technical updates to the bacterial method for nitrate isotopic analyses. Anal. Chem. 2011, 83(5):1850-1856.
Meckenstock R.U., Elsner M., Griebler C., Lueders T., Stumpp C., Aamand J., Agathos S.N., Albrechtsen H.J., Bastiaens L., Bjerg P.L., Boon N., Dejonghe W., Huang W.E., Schmidt S.I., Smolders E., Sorensen S.R., Springael D., van Breukelen B.M. Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers. Environ. Sci. Technol. 2015, 49(12):7073-7081.
Moore T.A., Xing Y., Lazenby B., Lynch M.D., Schiff S., Robertson W.D., Timlin R., Lanza S., Ryan M.C., Aravena R., Fortin D., Clark I.D., Neufeld J.D. Prevalence of anaerobic ammonium-oxidizing bacteria in contaminated groundwater. Environ. Sci. Technol. 2011, 45(17):7217-7225.
Murgulet D., Tick G.R. Understanding the sources and fate of nitrate in a highly developed aquifer system. J. Contam. Hydrol. 2013, 155:69-81.
Ponsin V., Coulomb B., Guelorget Y., Maier J., Hohener P. In situ biostimulation of petroleum hydrocarbon degradation by nitrate and phosphate injection using a dipole well configuration. J. Contam. Hydrol. 2014, 171:22-31.
Rivett M.O., Buss S.R., Morgan P., Smith J.W., Bemment C.D. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res. 2008, 42(16):4215-4232.
Robertson W.D., Moore T.A., Spoelstra J., Li L., Elgood R.J., Clark I.D., Schiff S.L., Aravena R., Neufeld J.D. Natural attenuation of septic system nitrogen by anammox. Ground Water 2012, 50(4):541-553.
Salminen J.M., Petajajarui S.J., Tuominen S.M., Nysten T.H. Ethanol-based in situ bioremediation of acidified, nitrate-contaminated groundwater. Water Res. 2014, 63:306-315.
Sebilo M., Billen G., Grably M., Mariotti A. Isotopic composition of nitrate-nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River system. Biogeochemistry 2003, 63(1):35-51.
Selbie D.R., Lanigan G.J., Laughlin R.J., Di H.J., Moir J.L., Cameron K.C., Clough T.J., Watson C.J., Grant J., Somers C., Richards K.G. Confirmation of co-denitrification in grazed grassland. Sci. Rep. 2015, 5:17361.
Service Publique de Wallonie Notice explicative de la masse d'eau souterraine RWE030 2006.
Singleton M.J., Esser B.K., Moran J.E., Hudson G.B., McNab W.W., Harter T. Saturated zone denitrification: potential for natural attenuation of nitrate contamination in shallow groundwater under dairy operations. Environ. Sci. Technol. 2007, 41(3):759-765.
Sonthiphand P., Hall M.W., Neufeld J.D. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Front. Microbiol. 2014, 5:14.
Spence M.J., Bottrell S.H., Thornton S.F., Richnow H.H., Spence K.H. Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways in a chalk aquifer. J. Contam. Hydrol. 2005, 79(1-2):67-88.
Sutka R.L., Ostrom N.E., Ostrom P.H., Gandhi H., Breznak J.A. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath. Rapid Commun. Mass Spectrom. 2003, 17(7):738-745.
Sutka R.L., Ostrom N.E., Ostrom P.H., Gandhi H., Breznak J.A. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath (vol 18, pg 1411, 2004). Rapid Commun. Mass Spectrom. 2004, 18(12):1411-1412.
Venterea R.T., Clough T.J., Coulter J.A., Breuillin-Sessoms F. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production. Sci. Rep. 2015, 5.
Wankel S.D., Kendall C., Paytan A. Using nitrate dual isotopic composition (delta N-15 and delta O-18) as a tool for exploring sources and cycling of nitrate in an estuarine system: Elkhorn Slough, California. J. Geophys. Res. Biogeosci. 2009, 114:15.
Wells N.S., Baisden W.T., Horton T., Clough T.J. Spatial and temporal variations in nitrogen export from a New Zealand pastoral catchment revealed by stream water nitrate isotopic composition. Water Resour. Res. 2016, 52. 10.1002/2015WR017642.
Xue D., Botte J., De Baets B., Accoe F., Nestler A., Taylor P., Van Cleemput O., Berglund M., Boeckx P. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res. 2009, 43(5):1159-1170.
Zhang L., Altabet M.A., Wu T.X., Hadas O. Sensitive measurement of (NH4+N)-N-15/N-14 (delta(NH4+)-N-15) at natural abundance levels in fresh and saltwaters. Anal. Chem. 2007, 79(14):5297-5303.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.