2016 • In Sustainable Hydraulics in the Era of Global Change - Proceedings of the 4th European Congress of the International Association of Hydroenvironment engineering and Research, IAHR 2016
UEE - Urban and Environmental Engineering - ULiège
Disciplines :
Civil engineering
Author, co-author :
Goffin, Louis ; Université de Liège > Département ArGEnCo > HECE (Hydraulics in Environnemental and Civil Engineering)
Dewals, Benjamin ; Université de Liège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
Erpicum, Sébastien ; Université de Liège > Scientifiques attachés au Doyen (Sc.appliquées)
Pirotton, Michel ; Université de Liège > Département ArGEnCo > HECE (Hydraulics in Environnemental and Civil Engineering)
Archambeau, Pierre ; Université de Liège > Département ArGEnCo > HECE (Hydraulics in Environnemental and Civil Engineering)
Language :
English
Title :
Non-linear optimization of a 1-D shallow water model and integration into Simulink for operational use
Publication date :
2016
Event name :
4th IAHR Europe Congress
Event organizer :
ULg - Université de Liège
Event place :
Liège, Belgium
Event date :
July 27 to 29, 2016
Audience :
International
Main work title :
Sustainable Hydraulics in the Era of Global Change - Proceedings of the 4th European Congress of the International Association of Hydroenvironment engineering and Research, IAHR 2016
Brodtkorb, A.R., Sætra, M.L.&Altinakar, M., 2012. Efficient shallow water simulations on GPUs: Implementation, visualization, verification, and validation. Computers & Fluids, 55, pp. 1-12.
Corana, A. et al., 1987. Minimizing multimodal functions of continuous variables with the "simulated annealing" algorithm. ACMTransactions on Mathematical Software, 13(3), pp. 262-280.
Erpicum, S. et al., 2010. Dam break flow computation based on an efficient flux vector splitting. Journal of Computational and Applied Mathematics, 234(7), pp. 2143-2151.
Gilles, G., Habraken, A.M. & Duchêne, L., 2010. Material Parameter Identification of Cazacu’s Model for Ti6Al4V Using the Simulated Annealing Algorithm. In T. T. Publications, ed. Materials Science Forum. pp. 1125-1130.
Goffe, W.L., Ferrier, G.D. & Rogers, J., 1994. Global optimization of statistical functions with simulated annealing. Journal of Econometrics, 60(1), pp. 65-99.
Jain, S.K. & Sudheer, K.P., 2008. Fitting of hydrologic models: a close look at the Nash-Sutcliffe index. Journal of hydrologic engineering, 13(10), pp. 981-986.
Kerger, F. et al., 2011. A fast universal solver for 1D continuous and discontinuous steady flows in rivers and pipes. International Journal for Numerical Methods in Fluids, 66(1), pp. 38-48.
Kirkpatrick, S., Gelatt, C.D. & Vecchi, M.P., 1983. Optimization by simulated annealing. Science, 220(4598), pp. 671-680.
Legates, D.R. & McCabe Jr., G.J., 1999. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water resources research, 35(1), pp. 233-241.
Levenberg, K., 1944. A method for the solution of certain non-linear problems in least squares. The Quarterly of Applied Mathematics.
Machiels, O. et al., 2011. Theoretical and numerical analysis of the influence of the bottom friction formulation in free surface flow modelling. Water SA, 37(2), pp. 221-228.
Marquardt, D.W., 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial &Applied Mathematics, 11(2), pp. 431-441.
Metropolis, N. et al., 1953. Equation of state calculations by fast computing machines. The journal of chemical physics, 21(6), pp. 1087-1092.
Nash, J.E. & Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of hydrology, 10(3), pp.282-290.
Sethian, J.A. & Vladimirsky, A., 2003. Ordered upwind methods for static Hamilton-Jacobi equations: Theory and algorithms. SIAM Journal on Numerical Analysis, 41(1), pp. 325-363.
Willmott, C.J., 1981. On the validation of models. Physical geography, 2(2), pp. 184-194.