R. Atar and O. Zeitouni. Exponential stability for nonlinear filtering. Annales de l'IHP Probabilités et Statistiques, 33 (6): 697-725, 1997.
L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The annals of mathematical statistics, pages 164-171, 1970.
G. Birkhoff. Extensions of Jentzsch's theorem. Transactions of the American Mathematical Society, pages 219-227, 1957.
P. Bougerol. Kalman filtering with random coefficients and contractions. SIAM Journal on Control and Optimization, 31 (4): 942-959, 1993.
P. J. Bushell. Hilbert's metric and positive contraction mappings in a Banach space. Archive for Rational Mechanics and Analysis, 52 (4): 330-338, 1973.
O. Cappé, E. Moulines, and T. Rydén. Inference in Hidden Markov Models. Springer Verlag, New York, 2005.
S. Gaubert and Z. Qu. The contraction rate in Thompson's part metric of order-preserving flows on a cone-application to generalized Riccati equations. Journal of Differential Equations, 256 (8): 2902-2948, 2014.
D. Hilbert. Über die gerade linie als kürzeste verbindung zweier punkte. Mathematische Annalen, 46 (1): 91-96, 1895.
A. H. Jazwinski. Stochastic processes and filtering theory. Academic Press, 1970.
R. E. Kalman. New methods in Wiener filtering theory. In Proceedings of the First Symposium on Engineering Applications of Random Function Theory and Probability. John Wiley & Sons, New York, 1963.
R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction theory. Journal of Basic Engineering, 83 (1): 95-108, 1961.
E. Kohlberg and J. W. Pratt. The contraction mapping approach to the Perron-Frobenius theory: Why Hilbert's metric? Mathematics of Operations Research, 7 (2): 198-210, 1982.
J. Lawson and Y. Lim. A Birkhoff contraction formula with applications to Riccati equations. SIAM Journal on Control and Optimization, 46 (3): 930-951, 2007.
F. Le Gland and L. Mevel. Exponential forgetting and geometric ergodicity in hidden markov models. Mathematics of Control, Signals and Systems, 13 (1): 63-93, 2000.
F. Le Gland and N. Oudjane. Stability and uniform approximation of nonlinear filters using the Hilbert metric and application to particle filters. The Annals of Applied Probability, 14 (1): 144-187, 2004.
C. Liverani and M. P. Wojtkowski. Generalization of the Hilbert metric to the space of positive definite matrices. Pacific J. Math, 166 (2): 339-355, 1994.
A. N. Shiryaev. On stochastic equations in the theory of conditional Markov process. Theory of probability and its applications, 11 (1): 179-184, 1966.
R. L. Stratonovich. Conditional Markov processes. Theory of Probability and Its Applications, 5 (2): 156-178, 1960.
M. P. Wojtkowski. Geometry of Kalman filters. J. Geom. Symmetry Phys, 2007