[en] Metal-enhanced processes arising from the coupling of a dye with metallic nanoparticles (NPs) have been widely reported. However, few studies have simultaneously investigated these mechanisms from the viewpoint of dye fluorescence and photoactivity. Herein, protoporphyrin IX (PpIX) is grafted onto the surface of silver core silica shell NPs in order to investigate the effect of silver (Ag) localized surface plasmon resonance (LSPR) on PpIX fluorescence and PpIX singlet oxygen (1O2) production. Using two Ag core sizes, we report a systematic study of these photophysical processes as a function of silica (SiO2) spacer thickness, LSPR band position and excitation wavelength. The excitation of Ag NP LSPR, which overlaps the PpIX absorption band, leads to the concomitant enhancement of PpIX fluorescence and 1O2 production independently of the Ag core size, but in a more pronounced way for larger Ag cores. These enhancements result from the increase in the PpIX excitation rate through the LSPR excitation and decrease when the distance between PpIX and Ag NPs increases. A maximum fluorescence enhancement of up to 14-fold, together with an increase in photogenerated 1O2 production of up to five times are obtained using 100 nm Ag cores coated with a 5 nm thick silica coating.
Disciplines :
Physics
Author, co-author :
Lismont, Marjorie ; Université de Liège > Département de physique > Biophotonique
Dreesen, Laurent ; Université de Liège > Département de physique > Biophotonique
Heinrichs, Benoît ; Université de Liège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces
Pàez Martinez, Carlos ; Université de Liège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces
Language :
English
Title :
Protoporphyrin IX Functionalised AgSiO2 Core-shell Nanoparticle: Plasmonic Enhancement of Fluorescence and Singlet Oxygen Production
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Montagnon, T., D. Kalaitzakis, M. Triantafyllakis, M. Stratakis, and, G. Vassilikogiannakis, (2014) Furans and singlet oxygen-why there is more to come from this powerful partnership. Chem. Commun. 50, 15480-15498. DOI: 10.1039/C4CC02083A.
Kim, H., W. Kim, Y. Mackeyev, G. S. Lee, H. J. Kim, T. Tachikawa, S. Hong, S. Lee, J. Kim, L. J. Wilson, T. Majima, P. J. Alvarez, W. Choi, and, J. Lee, (2012) Selective oxidative degradation of organic pollutants by singlet oxygen-mediated photosensitization: Tin porphyrin versus C60 aminofullerene systems. Environ. Sci. Technol. 46, 9606-9613. DOI: 10.1021/es301775k.
DeRosa, M., and, R. Crutchley, (2002) Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233-234, 351-371. http://www.sciencedirect.com/science/article/pii/S0010854502000346 (accessed January 24, 2014).
Nandihalli, U. B., C. A. Rebeiz, K. N. Reddy, and, J. Velu, (1990) Tetrapyrrole-dependent photodynamic herbicides. Photochem. Photobiol. 52, 1099-1117.
Ben Amor, T., and, G. Jori, (2000) Sunlight-activated insecticides: Historical background and mechanisms of phototoxic activity. Insect Biochem. Mol. Biol. 30, 915-925. DOI: 10.1016/S0965-1748(00)00072-2.
Castano, A. P., T. N. Demidova, and, M. R. Hamblin, (2004) Mechanisms in photodynamic therapy: Part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn. Ther. 1, 279-293. DOI: 10.1016/S1572-1000(05)00007-4.
Ogilby, P. R., (2010) Singlet oxygen: There is indeed something new under the sun. Chem. Soc. Rev. 39, 3181-3209. DOI: 10.1039/b926014p.
Purcell, E. M., (1946) Proceedings of the American Physical Society. Phys. Rev. 69, 674. http://link.aps.org/doi/10.1103/PhysRev.69.674.2.
Anger, P., P. Bharadwaj, and, L. Novotny, (2006) Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002. DOI: 10.1103/PhysRevLett.96.113002.
Geddes, C. D., and, J. R. Lakowicz, (2002) Metal-enhanced fluorescence. J. Fluoresc. 12, 121-129. http://books.google.com/books?hl=en&lr=&id=akgpFdT9sA8C&oi=fnd&pg=PR5&dq=Metal-Enhanced+Fluorescence&ots=xDhXCsPc8V&sig=D24yi513YcvMY0z0SP-xn1N6jAI (accessed August 4, 2014).
Zhang, Y., A. Dragan, and, C. D. Geddes, (2009) Wavelength dependence of metal-enhanced fluorescence. J. Phys. Chem. C 113, 12095-12100. DOI: 10.1021/jp9005668.
Zhang, Y., K. Aslan, M. J. R. Previte, and, C. D. Geddes, (2007) Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore's structured emission. Appl. Phys. Lett. 90, 053107. DOI: 10.1063/1.2435661.
Zhang, Y., K. Aslan, M. J. R. Previte, and, C. D. Geddes, (2006) Metal-enhanced S(2) fluorescence from azulene. Chem. Phys. Lett. 432, 528-532. DOI: 10.1016/j.cplett.2006.11.005.
Mishra, H., B. L. Mali, J. Karolin, A. I. Dragan, and, C. D. Geddes, (2013) Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system. Phys. Chem. Chem. Phys. 15, 19538-19544. DOI: 10.1039/c3cp50633a.
Zhang, Y., K. Aslan, M. Previte, S. N. Malyn, and, C. D. Geddes, (2006) Metal-enhanced phosphorescence: Interpretation in terms of triplet-coupled radiating plasmons. J. Phys. Chem. B. 110, 25108-25114. http://pubs.acs.org/doi/abs/10.1021/jp065261v (accessed March 4, 2014).
Zhang, Y., K. Aslan, M. J. R. Previte, and, C. D. Geddes, (2007) Metal-enhanced singlet oxygen generation: A consequence of plasmon enhanced triplet yields. J. Fluoresc. 17, 345-349. DOI: 10.1007/s10895-007-0196-y.
Zhang, Y., K. Aslan, M. J. R. Previte, and, C. D. Geddes, (2008) Plasmonic engineering of singlet oxygen generation. Proc. Natl Acad. Sci. USA 105, 1798-1802. DOI: 10.1073/pnas.0709501105.
Deng, W., F. Xie, H. T. M. C. M. Baltar, and, E. M. Goldys, (2013) Metal-enhanced fluorescence in the life sciences: Here, now and beyond. Phys. Chem. Chem. Phys. 15, 15695-15708. DOI: 10.1039/c3cp50206f.
Aslan, K., M. Wu, J. R. Lakowicz, and, C. D. Geddes, (2007) Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J. Am. Chem. Soc. 129, 1524-1525. DOI: 10.1021/ja0680820.
Aslan, K., J. R. Lakowicz, and, C. D. Geddes, (2005) Plasmon light scattering in biology and medicine: New sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol. 9, 538-544. DOI: 10.1016/j.cbpa.2005.08.021.
Yang, J., F. Zhang, Y. Chen, S. Qian, P. Hu, W. Li, Y. Deng, Y. Fang, L. Han, M. Luqman, and, D. Zhao, (2011) Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence. Chem. Commun. (Camb.) 47, 11618-11620. DOI: 10.1039/c1cc15304h.
Tovmachenko, O. G., C. Graf, D. J. Van den Heuvel, A. Van Blaaderen, and, H. C. Gerritsen, (2006) Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv. Mater. 18, 91-95. DOI: 10.1002/adma.200500451.
Arifin, E., and, J. K. Lee, (2013) The distance-dependent fluorescence enhancement phenomena in uniform size Ag@SiO2@SiO2(dye) nanocomposites. Bull. Korean Chem. Soc. 34, 539-544.
Stranik, O., R. Nooney, C. McDonagh, and, B. D. MacCraith, (2006) Optimization of nanoparticle size for plasmonic enhancement of fluorescence. Plasmonics 2, 15-22. DOI: 10.1007/s11468-006-9020-9.
Dulkeith, E., A. Morteani, T. Niedereichholz, T. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and, D. I. Gittins, (2002) Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Phys. Rev. Lett. 89, 203002. DOI: 10.1103/PhysRevLett.89.203002.
Dulkeith, E., M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and, W. J. Parak, (2005) Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett. DOI: 10.1021/nl0480969.
Acuna, G. P., M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, and, P. Tinnefeld, (2012) Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. ACS Nano 6, 3189-3195. DOI: 10.1021/nn2050483.
Dragan, A. I., and, C. D. Geddes, (2012) Metal-enhanced fluorescence: The role of quantum yield, Q0, in enhanced fluorescence. Appl. Phys. Lett. 100, 093115. DOI: 10.1063/1.3692105.
Lismont, M., A. François, L. Dreesen, and, T. M. Monro, (2014) Metal-enhanced fluorescence: effect of surface coating, in: Plasmon. Biol. Med. XI: p. 89570P-89570P-7. http://dx.doi.org/10.1117/12.2040788.
Schneider, G., G. Decher, N. Nerambourg, R. Praho, M. H. V. Werts, and, M. Blanchard-Desce, (2006) Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes. Nano Lett. 6, 530-536. DOI: 10.1021/nl052441s.
Chen, Y., K. Munechika, and, D. S. Ginger, (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 7, 690-696. DOI: 10.1021/nl062795z.
Cui, Q., F. He, L. Li, and, H. Möhwald, (2014) Controllable metal-enhanced fluorescence in organized films and colloidal system. Adv. Colloid Interface Sci. 207, 164-177. DOI: 10.1016/j.cis.2013.10.011.
Aslan, K., I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and, C. D. Geddes, (2005) Metal-enhanced fluorescence: An emerging tool in biotechnology. Curr. Opin. Biotechnol. 16, 55-62. DOI: 10.1016/j.copbio.2005.01.001.
Mooi, S. M., and, B. Heyne, (2013) Amplified production of singlet oxygen in aqueous solution using metal enhancement effects. Photochem. Photobiol. 90, 85-91. DOI: 10.1111/php.12176.
Khaing Oo, M. K., Y. Yang, Y. Hu, M. Gomez, H. Du, and, H. Wang, (2012) Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano 6, 1939-1947. DOI: 10.1021/nn300327c.
de Melo, L. S. A., A. S. L. Gomes, S. Saska, K. Nigoghossian, Y. Messaddeq, S. J. L. Ribeiro, and, R. E. de Araujo, (2012) Singlet oxygen generation enhanced by silver-pectin nanoparticles. J. Fluoresc. 22, 3-8. DOI: 10.1007/s10895-012-1107-4.
Hu, B., X. Cao, K. Nahan, J. Caruso, H. Tang, and, P. Zhang, (2014) Surface plasmon-photosensitizer resonance coupling: An enhanced singlet oxygen production platform for broad-spectrum photodynamic inactivation of bacteria. J. Mater. Chem. B 2, 7073-7081. DOI: 10.1039/C4TB01139B.
Lismont, M., C. A. Páez-Martinez, and, L. Dreesen, (2015) A one-step short-time synthesis of Ag@SiO2 core-shell nanoparticles. J. Colloid Interface Sci. 447, 40-49.
Zhang, J., Y. Fu, M. H. Chowdhury, and, J. R. Lakowicz, (2008) Plasmon-coupled fluorescence probes: Effect of emission wavelength on fluorophore-labeled silver particles. J. Phys. Chem. C 112, 9172-9180. http://pubs.acs.org/doi/abs/10.1021/jp8000493 (accessed December 1, 2014).
Aslan, K., Z. Leonenko, J. R. Lakowicz, and, C. D. Geddes, (2005) Fast and slow deposition of silver nanorods on planar surfaces: Application to metal-enhanced fluorescence. J. Phys. Chem. B. 109, 3157-3162. DOI: 10.1021/jp045186t.
Kelly, K. L., and, E. Coronado, (2003) The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J Phys. Chem. B. 107, 668-677. http://www.tandfonline.com/doi/abs/10.1080/14427591.2008.9686601 (accessed October 21, 2014).
Liz-Marzán, L. M., M. Giersig, and, P. Mulvaney, (1996) Synthesis of nanosized gold-silica core-shell particles. Langmuir 12, 4329-4335. DOI: 10.1021/la9601871.
Pan, S., Z. Wang, and, L. J. Rothberg, (2006) Enhancement of adsorbed dye monolayer fluorescence by a silver nanoparticle overlayer. J. Phys. Chem. B. 110, 17383-17387. DOI: 10.1021/jp063191m.
Jiang, C., T. Zhao, P. Yuan, N. Gao, Y. Pan, Z. Guan, N. Zhou, and, Q. H. Xu, (2013) Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles. ACS Appl. Mater. Interfaces 5, 4972-4977. DOI: 10.1021/am4007403.
Li, D., B. I. Swanson, J. M. Robinson, and, M. A. Hoffbauer, (1993) Porphyrin based self-assembled monolayer thin films: Synthesis and characterization. J. Am. Chem. Soc. 115, 6975-6980. DOI: 10.1021/ja00068a068.
Gadenne, V., L. Porte, and, L. Patrone, (2014) Structure and growth mechanism of self-assembled monolayers of metal protoporphyrins and octacarboxylphthalocyanine on silicon dioxide. RSC Adv. 4, 64506-64513. DOI: 10.1039/C4RA11285G.
Cherian, S., and, C. C. Wamser, (2000) Adsorption and photoactivity of tetra(4-carboxyphenyl)porphyrin (TCPP) on nanoparticulate TiO2. J. Phys. Chem. B. 104, 3624-3629.
Ghosh, M., B. Roy, A. Jha, and, S. Sinha, (2014) Ground state charge transfer complex formation of some metalloporphyrins with aromatic solvents. Chem. Phys. Lett. 592, 149-154. DOI: 10.1016/j.cplett.2013.12.040.
Lakowicz, J. R., (2005) Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 337, 171-194. DOI: 10.1016/j.ab.2004.11.026.
Lovell, J. F., T. W. B. Liu, J. Chen, and, G. Zheng, (2010) Activatable photosensitizers for imaging and therapy. Chem. Rev. 110, 2839-2857. DOI: 10.1021/cr900236h.
Ghosh, M., A. K. Mora, S. Nath, A. K. Chandra, A. Hajra, and, S. Sinha, (2013) Photophysics of Soret-excited free base tetraphenylporphyrin and its zinc analog in solution. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 116, 466-472. DOI: 10.1016/j.saa.2013.07.047.
Diaz-Uribe, C. E., M. C. Daza, E. A. Páez-Mozo, F. Martínez, C. L. B. Guedes, and, E. Di Mauro, (2013) Visible light singlet oxygen production with tetra(4-carboxyphenyl)porphyrin/SiO2. J Photochem. Photobiol. A Chem. 259, 47-52. DOI: 10.1016/j.jphotochem.2013.03.005.
Ergaieg, K., M. Chevanne, J. Cillard, and, R. Seux, (2008) Involvement of both Type I and Type II mechanisms in Gram-positive and Gram-negative bacteria photosensitization by a meso-substituted cationic porphyrin. Sol. Energy 82, 1107-1117. DOI: 10.1016/j.solener.2008.05.008.
Lion, Y., M. Delmelle, and, A. Van de Vorst, (1976) New method of detecting singlet oxygen production. Nature 263, 442-443. DOI: 10.1038/263442a0.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.